W134 for the Elevator Market

Elevator Applications

- Gearless Motors
- Gear Motors

FRICTION MATERIAL FOR ELEVATORS

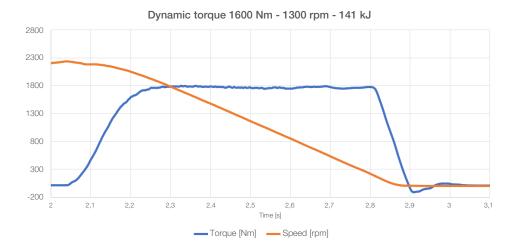
Advanced Friction Material Technology

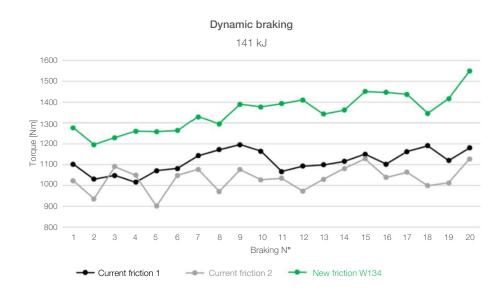
The Warner Electric engineering team drew on its extensive brake technology knowledge, combined with vast elevator application experience, to develop the new W134 friction material.

The new addition to the Warner Electric friction material family is designed to maintain consistent torque during both static braking and dynamic braking over a large range of rotation speeds with no torque overshoot at braking engagement. Consistent torque stability is also maintained in extreme temperatures and other challenging environmental conditions.

The W134 friction material is suitable for use in all elevator technologies, including belt-driven systems where torque stability is a critical concern.

The friction material was put through a rigorous battery of in-house testing to ensure that it's best-in-class performance is well-suited for a wide range of electrified powertrain applications.


	Current Lining	New Friction W134
Energy per disc	57 kJ max	190 kJ
Max speed	900 rpm	1300 rpm
Max torque < 160%	100% adjusted brake	No adjustment
Holding torque	-10% / -15%	None
Climate	10% impact	None
Day + 1	Stability Recheck Warner	None


www.warnerelectric.com

W134

- Superior torque stability during both static braking and dynamic braking
- Torque stability is maintained in extreme temperatures and other challenging environmental conditions
- Suitable for all elevator technologies, including belt-driven systems where torque stability is critical
- 100% organic-based, non-metallic add-ons
- Excellent energy dissipation

