Energy Efficient Geared Motors

AC Line Operated / North America

Geared Motor Selection

Questionaire for geared motor selection	39
Drive configuration	
Drive configuration General	
Required data for drive configuration	40
Determining the motor power	41
Determining the required torque	
Determining the gear reduction ratio	41
Determining the factor of inertia	
Determining the shock load	
Determining the minimum service factor f _{Bmin}	42
Brake specification	
Torque-speed characteristic	43
Dynamic power	
Static power	
Total power P _G	44
No-load cycle rate Z $_{0}$	
Load factor KL	
Radial and axial forces on the output shaft	46
Radial and axial forces on the output shaft	46
Maximum allowable radial force at force application point X	46
Bearing load limit	
Shaft strength	47
Helical gear unit BG series	
Shaft-mounted gear unit BF series	
Bevel gear unit BK series	
Worm gear unit BS series	50
Transmission components	
Factor f _z for the type of transmission component	
Axial force	
Sizing based on efficiency	
Gear efficiency η_{gear}	
System efficiency η_{system}	
Shock loads of machinery	54

Energy Efficient Geared Motors

AC Line Operated / North America

Questionaire for geared motor selection

A REGAL REXNORD BRAND		Information Company:	
Bauer Gear Motor LLC., 701 Carrier Dr., NC 28216 Charlotte Phone (732)469-8770 bauer.us@bauergears	s.com	Contact person: Phone: Email:	
Questio	nnaire for geared	I motor selection	on
Gearbox type	BK	□ BS	⊖ Hiflex
Helical gears Parallel shaft ge Number of items:	ars Bevel gears	Worm gears	□ Standard □ Stainless
Technical Data Output shaft speed n2: rpm Torque M2: Nm Motor power: kW Efficiency class:	Voltage: Connection: Temperature Frequency: Frequency Frequency ra	□ 50 Hz □ 60 Hz inverter duty	□ H z Hz
Operation Service factor required: min or Type of loads (conveyor, mixer, crust Number of switching per hour: Daily operating 8 hour time: Light shock load	□ 16 hour □ Medium shock load	□ 24 hour □ Heavy shock loa □ other S	 ad Duty =%
Operation Duty: S1 Output shaft design Solid shaft on side V/H/VH: Hollow shaft with keyway Special shaft dimensions (DxL), x Second shaft end on motor (DxL), x	□ Hollow Shaft for s □ Shrink disk _mm □ Second shaft end	t parallel key	□ Other (sketch attached) □ Splined Shaft acc. to DIN 5480 (ZW)
Mounting position		on motor with square sha	it (∠v)
 □ Foot with clearance hole □ Foot with tapped holes □ Torque arm with rubber buffers Mounting (acc. to page. 2 - H1, H2, V1, V2, et Terminal box position (acc. to page. 3): □ I □ other: 		□ rear les □ front □ left Painting □ Standard RAL 7 □ other RAL	☐ bottom ☐ top ☐ right 031
Environment IP prot. type per EN 60034: IP54 IP6 Indoor installation	5 🗆 IP66 🗆 IP67 🗆 Outdoor installation	IP68 □ IP69K □ Corrosive envirc	nment:
Ambient temperature range:	from°C to +	°C Relative hur	
Motor Accessories Brake voltage:V Backstop:left right Thermistor motor protection Temperatursensor KTY Encoder type Rain cover	Required braking torque: Brake wear/function mor Thermostats motor prote Temperatursensor PT100 No. of pulse: Forced ventilation	itoring Brake he Brake he Ction Anticond	ater ater ensation heater (Motor) age

Additional requirements may be specified in a freely written form.

Drive configuration

	access and produ	ucts. Geared motors are used to implement these mot	e manufacture			
		ment. The objective of drive configuration is to obtain the				
	each type of motio					
		nes and equipment vary considerably. Experienced design	engineers rec			
	the necessary mo	tions to a few standard types:				
	continuous lin	ear motion				
	 reciprocating I 	inear motion				
	 horizontal lines 	ar motion				
		que linear motion for lifting and lowering loads				
	 continuous ro 	tary motion and reciprocating rotary motion				
	All motions can be	e divided into:				
	- an acceleratio	n phase				
	- a constant-ve					
		eleration) phase				
	These motion pl	nases must be examined separately when sizing a d	drive, in orde			
	determine the pha	ase with the highest load. After the maximum load has bee	en determined,			
	drive system can	be selected.				
	See our separate	"Design Guide" publication for assistance with various use	cases.			
Dequired data for drive	In addition to the	data in the questionaire for geared mater calestian, the follow	vina doto io nov			
Required data for drive configuration	sary for drive conf	data in the questionaire for geared motor selection, the follow	ving data is neo			
comgaration		iguration.				
	Designation	Description				
	_	Description	Unit			
	Z	Cycle rate	[1/h]			
	Z td	Cycle rate Operating time per day	[1/h] [h]			
	Z td ta	Cycle rate Operating time per day Deceleration time	[1/h] [h] [s]			
	Z t _d t _a n ₂	Cycle rate Operating time per day Deceleration time Output speed	[1/h] [h] [s] [rpm]			
	Z t _d t _a n ₂ n	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed	[1/h] [h] [s] [rpm] [rpm]			
	Z t _d t _a n ₂ J	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia	[1/h] [h] [s] [rpm] [rpm] [kgm ²]			
	Z t _d t _a n ₂ J J _{ext}	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia	[1/h] [h] [s] [rpm] [rpm] [kgm ²] [kgm ²]			
	Z td ta n2 n J Jext Jext	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia referred to the rotor shaft	[1/h] [h] [s] [rpm] [rpm] [kgm ²] [kgm ²]			
	Z td ta N2 J Jext Jext Jrot	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Rotor moment of inertia	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²]			
	Z td ta n2 n J Jext Jext Jrot F	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Force	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²]			
	Z td ta N2 J Jext Jext Jrot	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Force Mass	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kg]			
	Z td ta N2 N J Jext Jext Jext F M V	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Force Mass Velocity	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kg] [m/s]			
	Z td ta N2 N J Jext Jext Jrot F M V a	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Rotor moment of inertia Force Mass Velocity Acceleration	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [m/s] [m/s]			
	Z td ta n2 n J J Jext Jext Jrot F M V a g	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Force Mass Velocity Acceleration Earth gravitational constant	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kg] [m/s] [m/s] [m/s ²]			
	Z td ta n2 n J Jext Jext Jrot F M V a a g Pdyn	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Force Mass Velocity Acceleration Earth gravitational constant Dynamic power	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kg] [m/s] [m/s ²] [m/s ²] [kW]			
	Z t _d t _a n ₂ n J Jext Jext Jrot F M V a g Pdyn Ps	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Force Mass Velocity Acceleration Earth gravitational constant Dynamic power Static power	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kg] [m/s] [m/s ²] [m/s ²] [m/s ²] [kW]			
	Z t _d t _a n2 N Jext Jext Jext Jrot F M V a g P dyn P S	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia External moment of inertia Force Mass Velocity Acceleration Earth gravitational constant Dynamic power Static power Power	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kg] [m/s] [m/s ²] [m/s ²] [kW] [kW]			
	Z t _d t _a n ₂ n J Jext Jext Jrot F M V a g Pdyn Ps	Cycle rate Operating time per day Deceleration time Output speed Rated rotor shaft speed Moment of inertia External moment of inertia External moment of inertia Force Mass Velocity Acceleration Earth gravitational constant Dynamic power Static power	[1/h] [h] [s] [rpm] [kgm ²] [kgm ²] [kgm ²] [kgm ²] [kg] [m/s] [m/s ²] [m/s ²] [m/s ²] [kW]			

Rated torque at rotor shaft

Braking or driving load torque

Specific limiting torque of gearbox at gear ratio i Rated braking torque

Deceleration torque

Gear reduction ratio

Inertia ratio

ΜN

Ma

ΜL

Mgr

MBr

i Fl [Nm]

[Nm]

[Nm]

[Nm] [Nm]

Drive configuration process

Motor configuration

Determining the motor power

The required power can generally be calculated as follows:

$$\mathsf{P} = \frac{\mathsf{F} \times \mathsf{v}}{\eta}$$

As previously described, all motions are divided into an acceleration phase (dynamic power), a constant-velocity phase (static power), and a braking (deceleration) phase.

Depending on the type of motion, the force F necessary to overcome all opposing forces such as rolling friction, linear friction, gravitational force, acceleration and so on arising from the drive train has a strong influence on the required power and must be determined explicitly for each use case.

See chapter Motors for assistance in selecting the right motor power.

Determining the required torque After the

After the motor power has been determined, the required gearbox output torque can be calculated with:

$$M_2 = \frac{P \times 9550}{n_2}$$

Determining the gear reduction ratio

The gear reduction ratio is the ratio of the rated speed of the motor (motor data see in chapter Motors) to the desired output speed of the geared motor.

$$i = \frac{n}{n_i}$$

Gearbox size selection

Determining the factor of inertia

The inertia ratio is the ratio of the sum of the moments of inertia of all masses driven by the motor and converted to the motor speed, including the moment of inertia of the motor rotor, to the moment of inertia of the rotor:

$$FI = \frac{J_{ext'} + J_{rot}}{J_{rot}} \quad \text{where} \quad J_{ext'} = \frac{J_{ext}}{i^2}$$

Drive configuration

Determining the shock load	The shock load (see chapter 6, 7, 8 and 9) is determined from the inertia factor, the type of transmission component and the relative moment of acceleration.			
Determining the minimum service factor f _{Bmin}	Based on the operating time per day, the cycle rate and the ascertained shock load, the service factor fBmin can be taken from the tables in chapter 6, 7, 8 and 9.			
	Based on this minimum service factor f_{Bmin} , select a geared motor from the tables that has a higher service factor as well as the required output speed, output torque and motor power.			
	Note: The service factor relates solely to the required torque for static operation needed by the application, which should be covered by the output torque of			

the selected geared motor.

The dynamic portion is not taken into consideration here.

The actual service factor of the geared motor with regard to required torque for static operation can therefore be calculated as follows:

$$f_{_{B}}=-\frac{M_{_{gr}}}{M_{_{2erf}}}$$

The final step is to specify the accessory options for the geared motor.

Essentially it is necessary to determine, based on the amount of friction energy to be dissipated by the brake, whether the brake is a holding brake or a working brake. See chapter Motor Mounted Components for the definitions of holding brakes and service brakes.

Once all the necessary data and requirements are known, the required braking torque can be calculated as follows:

$$M_{br} = M_{a} \pm M_{L}$$
$$M_{a} = \frac{J \times n}{9.55 \times t}$$

If the specific application data is not known, for horizontally driven equipment we recommend selecting a braking torque that is 1.0 to 1.5 times the rated torque of the motor.

In the case of applications with significant external moments of inertia (FI greater than 2) and with operating cycles per hour, the brake size must always be selected on the basis of the thermally allowable braking energy. See chapter Motor Mounted Components for detailed information on brake configuration.

In the case of lifting equipment, for safety reasons a braking torque twice as large as the rated torque of the motor should always be selected.

Brake specification

Gear Motor Selection Motor configuration

Torque-speed characteristic

The starting torque M_A with the rotor stationary, which is also called the locked-rotor torque, determines the acceleration of the equipment or system. If the motor is powered directly from the mains, bear in mind that the starting torque, usually listed in the motor data tables in the form of the ratio M_A/M_N , is a fixed and unalterable quantity. This means that the desired acceleration can only be approximated when the motor is operated directly from the mains. Operation from a frequency inverter is discussed separately.

Torque vs. Speed Curve

The **starting torque M**_A with the rotor stationary, which is also called the locked-rotor torque, determines the acceleration of the equipment or system. If the motor is powered directly from the mains, bear in mind that the starting torque, usually listed in the motor data tables in the form of the ratio M_A/M_N, is a fixed and unalterable quantity. This means that the desired acceleration can only be approximated when the motor is operated

directly from the mains. Operation from a frequency converter is discussed separately.

The **pull-up torque Ms** is the least amount of torque developed by the motor while it is coming up to speed. It must always be greater than the effective load torque at the time when the pull-up torque occurs, as otherwise it will not be possible to accelerate the drive.

The **breakdown torque M**_K is the maximum torque the motor is capable of producing. If the load increases above the rated torque M_n, the slip s increases, the speed n decreases, and the motor delivers more torque. This can rise to a maximum level M_K. After this point the motor stalls, which means that it suddenly stops running at this slip value (breakdown slip). If the breakdown torque is exceeded, either the load must be removed or the motor must be switched off immediately. Otherwise the motor will be destroyed as a result of overheating.

The **rated torque M**_N is the torque available in continuous operation at the rated power P_N and rated speed n_N .

Motor configuration

Dynamic power

The dynamic power is the power that accelerates the entire system, which consists of the load, transmission components, gearbox and motor.

$$\mathsf{P}_{\mathsf{dyn}} = \frac{\mathsf{m} \times \mathsf{a} \times \mathsf{v}}{\mathsf{\eta}}$$

Pdyn	Dynamic power [W]
m	Mass [kg]
а	Acceleration [m/s ²]
V	Velocity [m/s]
ŋ	Efficiency

Static power

The static power includes all forces present under zero-acceleration conditions. This includes rolling friction, linear friction, lifting force (with lifting) and wind force, among others.

$$P_{s} = \frac{F_{F} \times v}{\eta}$$

PsStatic power [W]FFTravel resistance [N]

Total power \mathbf{P}_{G}

$$P_{G} = P_{dyn} + P_{S}$$
$$P_{G} = \frac{m \times a \times v}{\eta} + \frac{F_{F} \times v}{\eta}$$

Horizontal motion, rotary motion and vertical motion upwards				
Start-up time [s]	$t_{A} = \frac{\left[J_{M} + \frac{J_{ext}}{\eta}\right] \times n_{M}}{9,55 \times \left[M_{A} - \frac{M_{L}}{\eta}\right]}$			
Cycle rate [c/h]	$Z = Z_{0} \times \frac{1 - \left(\frac{M_{L}}{M_{A} \times \eta}\right)}{\left(\frac{J_{s} + \frac{J_{ext}}{\eta} + J_{M}}{J_{M}}\right)} \times K_{L}$			
Vertical motion downwards				
Start-up time [s]	$t_{A} = \frac{\left[J_{M} + \frac{J_{ext}}{\eta}\right] \times n_{M}}{9,55 \times \left[M_{A} - (M_{L} \times \eta)\right]}$			
Cycle rate [c/h]	$Z = Z_{0} \times \frac{1 - \left[\frac{M_{L} \times \eta}{M_{A}}\right]}{\left[\frac{J_{s} + J_{M} + (J_{ext} \times \eta)}{J_{M}}\right]} \times K_{L}$			

No-load cycle rate Z₀

If the cycle rate is greater than normal (typically around 60 cycles per hour), the additional thermal load and, depending on the type of power transmission, the additional mechanical load must be taken into account in motor selection.

The no-load cycle rate Z_0 is the number of start cycles per hour with the motor running under no load (no external moments of inertia) in which the allowable winding temperature for the insulating material class F is reached.

No-load cycle rate Zo:

PN	PN	Туре	ZO
[HP]	[kW]		[c/h]
0.075	0.055	D04LA4	122000
0.1	0.075	D04LA4	95000
0.12	0.09	D04LA4	82000
0.15	0.11	D04LA4	70000
0.1	0.075	D05LA4	95000
0.12	0.09	D05LA4	82000
0.15	0.11	D05LA4	70000
0.25	0.18	D05LA4	47000
0.33	0.25	D05LA4	36000
0.4	0.3	D05LA4	31000
0.1	0.075	D06LA4	95000
0.12	0.09	D06LA4	82000
0.15	0.11	D06LA4	70000
0.25	0.18	D06LA4	47000
0.33	0.25	D06LA4	36000
0.4	0.3	D06LA4	31000
0.5	0.37	D07LA4	27000
0.75	0.55	D08MA4	19000
1	0.75	DPE08XB4	15000
1.5	1.1	DPE09XA4	11000
2	1.5	DPE09XB4	8700
3	2.2	DPE09XB4C	6400
4	3	DPE11LA4	5000
5	3.7	DPE11LA4	4200
5.4	4	DPE11LB4	4000
7.5	5.5	DPE11LB4C	3100
10	7.5	DPE13XA4	2400
12.5	9.5	DPE16LB4	2000
15	11	DPE16LB4	1800
20	15	DPE16XB4	1400
25	18.5	DPE18LB4	1200
30	22	DPE18XB4	1000
40	30	DPE20LA4	790
50	37	DPE22SA4	670
60	45	DPE22MA4	570

As a result of external loads, the no-load cycle rate is reduced to the allowable service cycle rate. The effect of the load is expressed by the inertia ratio FI and the load factor K_L .

Load factor KL

The load factor reflects the relative load **P/PN** and the duty cycle of the motor in operation between the cycles.

The relative load has a quadratic effect on the allowable cycle rate. The effect of the duty cycle depends on the circumstances. With little or no load, the stress on the motor decreases due to the relatively long cooling periods, while at rated load or heavy loading the stress on the motor increases due to load losses.

The load factor K_{L} for 4-pole motors is determined as follows:

$$\mathbf{K}_{L100} = 1 - \left(\frac{\mathbf{P}}{\mathbf{P}_{n}}\right)^{1.5}$$

$$K_{L} = 0.35 + (K_{L100} - 0.25) \times ED$$

Gear Motor Selection Radial and axial forces on the output shaft

Radial and axial forces on the output shaft

For each geared motor with a solid shaft, the allowable radial force $F_{R,(N,V)}$ referred to the center of the output shaft, x = l/2, is listed in the selection tables. The listed data applies to both foot-mounted and flange-mounted versions. If the force application point Fx is off center, the allowable radial force must be recalculated taking into account the bearing lifetime and the shaft strength.

Maximum allowable radial force at force application point X

To evaluate the radial force present at the force application point X, the allowable radial forces at position X must be determined with respect to the load limits of the bearings and the shaft strength.

If the calculated allowable radial forces at the force application point X are greater than the radial force that is present, the gearbox may be selected for the application. If the calculated values are not sufficient or the force application point X is not within the stub shaft length I, please consult Bauer Gear Motor.

If the calculated values are not sufficient or the force application point X is not within the stub shaft length I, please consult us.

Bearing load limit

$$F_{XL1} = F_q \times \frac{0.5 + b}{\left(\frac{X}{l} + b\right)}$$
$$F_{XL2} = F_q \times \frac{0.5 + a}{\left(\frac{X}{l} + a\right)}$$

Shaft strength

For the selected gear ratio and bearing type (normal or reinforced), Fq is the allowable perpendicular force F_{RN} or F_{RV} taken from the geared motor selection tables.

 F_{qmax} is the maximum allowable perpendicular force for the selected gearbox size as listed in the geared motor selection tables, independent of the bearing type (normal or reinforced).

The factors a, b and c for the individual gearbox types are listed in the following tables.

Taille	Paliers	Arbre Code	I	а	b	С
BG04	normaux	1	24	0.5625	1.5000	-
BG05	normaux	1	28	0.5893	1.3929	-
BG06	normaux	1	30	0.6667	1.4167	-
BG10	DOK DOLIN	1	40	0.7125	1.6750	-
BGIU	normaux	7	40	1.1000	2.0625	-
BG20	DOK DOLIN	1	50	0.6100	2.2500	-
BG20	normaux	7	50	0.9400	2.5800	-
DODO	10.0 (100.0) 11.0	1	60	0.5917	2.1750	-
BG30	normaux	7	60	0.9417	2.5250	-
BG40		1	60	0.6917	2.3667	-
BG40	normaux7 60	60	1.0083	2.6833	-	
BG50	10.0 (100.0) 11.0	1	20	0.5625	2.0000	-
BG50	normaux	7	80	0.8563	2.2938	-
BG60	10.0 (100.0) 11.0	1	100	0.5300	2.0200	-
BG60	normaux	7	1 100	0.7650	2.2550	-
D070	10.0 (100.0) 11.0	1	100	0.4750	1.7292	-
BG70	normaux	7	120	0.7292	1.9833	-
DODO		1	140	0.4286	1.7000	-
BG80	normaux7	140	0.6000	1.8714	-	
DC00	5000	1	000	0.3675	1.5300	-
BG90	normaux	7	200	0.5825	1.7450	-
DO100		1	000	0.3477	1.4341	-
BG100	normaux	7	220	0.5386	1.6250	-

Helical gear unit BG series

Gear Motor Selection Radial and axial forces on the output shaft

Shaft-mounted gear unit BF series

Frame size	Bearings	Output shaft		а	b	С
		code				
BF06	normal	1	50	0.4500	1.4100	-
BF10	normal	1	- 60	0.5083	1.4833	-
DEIU	normai	2	00	0.6500	1.6250	-
BF20	normal	1	70	0.4286	1.3571	-
BFZU	normai	2	10	0.5571	1.4857	-
BF30	normal	1	- 80	0.3875	1.2563	-
DF30	normai	2	00	0.5688	1.4375	-
BF40	normal	1	100	0.4050	1.2250	-
DI 40	normai	2	100	0.5250	1.3450	-
BF50	normal	1	120	0.3125	1.0625	-
DI 50	normai	2	120	0.3959	1.1458	-
	normal	1		0.3286	1.0821	-
BF60		2	140	0.4036	1.1571	-
DI OO	reinforced	1	140	-	-	0.2750
	Teirnorceu	2		-	-	0.3643
	normal	1		0.2722	1.0566	-
BF70	normai	2	180	0.3056	1.0889	-
DFTU	reinforced	1	160	-	-	0.2194
	reiniorceu	2		-	-	0.2639
	normal	1		0.2878	1.3536	-
BF80	normai	2	220	0.2873	1.3518	-
DFOU	reinforced	1	220	-	-	0.2364
	reiniorceu	2		-	-	0.2268
	pormal	1		0.2500	1.4231	-
BF90	normal	2	260	0.2500	1.4231	-
DLAN	rainforced	1 260	200	-	-	0.2027
	reinforced2]	-	-	0.1950

Radial and axial forces on the output shaft

Frame size	Bearings	Output shaft	1	а	b	С
		code				
		1		0.4375	1.9875	-
BK06		2		0.4375	1.9875	-
	normal	7	50	0.9125	2.4625	-
		8	1	0.9125	2.4625	-
DK10	in a rinn al	1	60	0.5917	2.2417	-
BK10	normal	2	60	0.5917	2.2417	-
		1		0.5071	2.2357	-
DKOO	normal	2	70	0.5071	2.2357	-
BK20	reinforced	1	70	-	-	0.3929
	reinforced	2	1	-	-	0.3929
		1		0.5250	2.2750	-
PK20	normal	2		0.5250	2.2750	-
BK30	reinforced	1	- 80	-	-	0.4125
	reinforced	2	1	-	-	0.4125
		1		0.4300	2.1700	-
DK40	normal	2		0.4300	2.1700	-
BK40		1	100	-	-	0.3400
	reinforced	2	1	-	-	0.3400
		1		0.4083	1.9417	-
DKEO	normal	2	100	0.4083	1.417	-
BK50	reinforced	1	120	-	-	0.3250
	reinforced	2	1	-	-	0.3250
		1		0.3536	1.8036	-
DKCO	normal	2	140	0.3536	1.0836	-
BK60	reinforced	1	140	-	-	0.3121
	reiniorceu	2]	-	-	0.2979
	normal	1		0.2861	1.6694	-
BK70	normal	2	180	0.2861	1.6694	-
	reinforced	1	100	-	-	0.2428
	reiniorced	2		-	-	0.2317
	normal	1		0.2818	1.5545	-
BK80	noma	2	220	0.2818	1.5545	-
DIVOU	reinforced	1	220	-	-	0.2305
	reiniorced	2		-	-	0.2214
	normal	1		0.2519	1.6096	-
BK90	поппа	2	260	0.2519	1.6096	-
DI/90	reinforced	1	200	-	-	0.1989
	TEILIOICEU	2		-	-	0.1912

4

Bevel gear unit BK series

Gear Motor Selection Radial and axial forces on the output shaft

Worm gear unit BS series

Frame size	Bearings	Output shaft		а	b	С
		code				
		1		0.6000	2.1000	-
BS02	normal	2	30	-	-	-
D302	normai	7	30	1.3333	2.8333	-
		8		-	-	-
		1		0.4375	1.9875	-
BS03	normal	2	40	-	-	-
0000	B303 Horman	7	40	0.9125	2.4625	-
		8		-	-	-
BS04	BS04 normal	1	40	0.5375	1.7875	-
D004	поппа	2	40	-	-	-
BS06	normal	1	50	0.4800	1.9400	-
8000	поппа	2	50	-	-	-
BS10	normal	1 e	60	0.5917	2.3083	-
0310	normai	2	00	-	-	-
BS20	normal	1	70	0.5500	2.4357	-
0020	поппа	2	10	-	-	-
BS30	normal	1	80	0.5312	2.4313	-
0000	normai	2	00	-	-	-
BS40	normal	1	120	0.4292	1.7042	-
0040	normai	2	120	-	-	-

Transmission components

If a transmission component is used (gearwheels, chainwheels, V-belt, etc.), the resulting radial forces can be determined as follows.

$$F_{_{R}} = \frac{2000 \times M}{D_{_{T}}} \times f_{_{Z}} \leq F_{_{R(N, V)}}$$

- M Torque [Nm]
- DT Pitch radius of the transmission component [mm]

fz Safety factor

A safety factor fz depending on the type of transmission component attached to the output shaft must be included when determining the value of the radial force $F_{\rm R}$ that is present.

Radial and axial forces on the output shaft

Transmission component	Safety factor fz	Note
Gearwheel	1	= > 17 teeth
Gearwheel	1,15	< 17 teeth
Chainwheel	1	= > 17 teeth
Chainwheel	1,25	< 17 teeth
Toothed rack	1,15	< 17 teeth (pinion)
V-belt	22,5	From tensioning force
Flat belt	23	From tensioning force
Friction wheel	34	

Axial force

Factor f_z for the type of transmission component

The following specification applies to the allowable axial force F_A on the output shaft (either tension or compression) for all Bauer geared motors and for foot, flange or hollowshaft versions:

$F_A = 0.5 \times F_{R(N,V)}$

Please consult Bauer Gear Motor in case of larger axial forces.

Sizing based on efficiency

Consequently, the most cost-effective motor selection must be based on the following factors.

- Duty type Evaluate the application, since most applications do not operate with S1 duty type.
- Operating time The longer the operating time, the shorter the payback time.
- Motor capacity utilisation Motor utilisation 75 % or higher load.
- Additional financial expenditure Safety factors increase the economic overhead.
- Payback time

Comparison of the general savings potential of gearboxes and motors in continuous running duty (S1) shows that the energy savings potential of gearboxes is significantly higher than that of motors. The efficiency of gearboxes is predominantly dependent on the tooth geometry and the friction values of the bearings and seals. At high input speeds and with vertical designs in which the first stage rotates fully immersed in oil, splash losses cannot be neglected. Vertical designs should generally be avoided.

The efficiency of worm gear drives is highly speed dependent (see illustration). Bauer worm gear units are available as two-stage worm gear units for frame sizes BS04 and larger. This enables very high reduction ratios and significantly higher efficiency than with pure worm gear units. A loss of 2 % per stage can be assumed for two-stage worm gear units.

Comparison of typical efficiency (η) versus reduction ratio (i) for helical spur gear units (H) with two, three or four stages and two-stage worm gear units (S), relative to the rated power of the gear unit.

Gear efficiency ngear

System efficiency η_{system}

The drive system provides the highest savings potential in the analysis of the overall efficiency. Designers and plant engineers should always strive to optimize the transmission components.

Transmission component	Conditions	Efficiency
Wire rope	Per full turn on the wire drum (with journal or roller bearings)	0.91–0.95
V-belt	Per full turn on the belt pulley (with normal belt tension)	0.88–0.93
Synthetic belts	For each full turn or roll, with roller bearings (normal belt tension)	0.81–0.85
Rubber belts	For each full turn or roll, with roller bearings (normal belt tension)	0.81–0.85
Toothed belts	For each full turn or roll, with roller bearings (normal belt tension)	0.90–0.96
Chains	For each full turn or chainwheel, with roller bearings (depending on chain size)	0.90–0.96
Spindles	Trapezoid-thread spindle	0.30 – 0.70
	Ballscrew spindle	0.70 – 0.95
Gear unit	With spur gears or bevel gears: 2% per stage, with worm gears and other types of toothing, according to manufacturer's data	0.94–0.98

Shock loads of machinery

Shock loads for various types of machinery are listed in standards and guidelines as well as industry-specific documents and manufacturer's documents. If for example a crusher or a press is listed here with an shock load class of III, this is justified. On the other hand, under favorable conditions a belt conveyor could have an shock load class of I, but this could quickly change to III with on/off operation, high speed and overdrive due to a loose chain.

Consequently, the classifications in the following table should by no means be taken blindly. They provide a rough point of reference, but the ultimate classification of the shock load should always take into account the factors specified by Bauer, in particular the inertia ratio, the cycle rate and the transmission component(s).

Drive	Shock load			Drive	Shock load		
Construction machinery				Rubber			
Construction lifts		II		Extruders			
Concrete mixers				Calenders			
Road construction machinery		1		Kneaders			
				Mixers			
Chemical industry				Rolling mills			
Cooling drums		II					
Mixers		II		Timber processing and wood	working	9	
Stirrers (light media)	I			Debarking drums			III
Stirrers (viscous media)		II		Planers			
Drying drums		II		Woodworking machinery			
Centrifuges (light)	I			Saw frames			III
Centrifuges (heavy)		II					
	-			Crane systems			
Transport and conveying syste	ems			Luffing mechanisms			
Hauling winches		II		Traversing mechanisms			III
Conveying machines			III	Hoisting mechanisms	I		
Apron conveyors		II		Slewing mechanisms		II	
Belt conveyors (bulk material)	I			Jib mechanisms			
Belt conveyors (piece goods)		II					
Bucket belt conveyors		II		Plastics			
Chain conveyors		II		Extruders			
Circular conveyors		II		Calenders			
Freight lifts		II		Mixers			
Flour bucket conveyors	I			Grinders and pulverisers		II	
Passenger lifts		II					
Flat belts		II		Metalworking			
Screw conveyors		II		Plate bending machines			
Gravel bucket conveyors		II		Plate straightening machines			
Inclined lifts			III	Hammers			
Steel belt conveyors		II		Planers			
Chain conveyors		II		Presses			
Blowers and fans				Shears Forging presses			
Roots blowers				Punches			
Blowers (axial and radial)	1			Countershafts and driveshafts			
Cooling tower fans				Machine tools (principal)		1	
Suction blowers				Machine tools (principal)	I		-

Shock loads of machinery

Drive	Shock load			Drive	Shock load	
Food processing				Rolling mills		
Filling machines	I			Plate shears		
Kneading machines		II		Plate turners	II	
Mashing machines				Billet presses		
Packaging machines	1			Billet and slab lines		
Sugar cane cutters				Billet conveyors		
Sugar cane mills				Wire drawing machines	II	
Sugar beet cutters				Descaling machines		
Sugar beet washers				Sheet metal mills		
				Plate mills		
Paper				Winders (strip and wire)	II	
Couching			III	Cold rolling mills		
Smoothing rolls				Chain transports		
Hollander		II		Billet shears		
Pulp grinder				Cooling beds		
Calender				Cross transports		
Wet presses				Roller tables (light)	II	
Shredders				Roller tables (heavy)		
Suction presses				Roll straighteners		
Suction rolls				Tube welders		
Drying rolls				Trimming shears		
				Cropping shears		
Stone and soil		1	1	Continuous casting machines		
Crushers				Roll adjustment devices	II	
Rotary kilns				Manipulators		
Hammer mills					I	
Tube mills				Laundry		
Beating mills				Drum dryers	II	
Tile and block presses				Washing machines	II	
Fabrics				Water treatment		
Winders				Centrifugal aerators		
Printing and dying machines				Archimedes screw		
Tanning vats					'''	
Shredders	1			-		
Looms		1				

Energy Efficient Geared Motors

AC Line Operated / North America