Energy Efficient Geared Motors

Electric overhead conveyors series BM

Gear Motor Selection

Project planning advice	31
Procedure for selecting BM-series geared motors	31
Carriage design	34
Selection of geared motors	

Energy Efficient Geared Motors

Electric overhead conveyors series BM

Bauer has an experienced team of experts available for the dimensioning of EHB carriage drives.

If you give a precise description of the conditions of operation, using our questionnaire (see 14.2), a quote for the best drive for you can be processed as quickly as possible.

For frequently used applications where the drives are supplied from a frequency inverter, however, the selection tables below can be used for rough drive dimensioning.

Procedure for selecting BM-series geared motors

1) Establish the wheel load and running wheel diameter

_				
ΗA	=	m₄	۰	a

F _A	[N]	(Wheel load on running wheel)
m _a g F _{rn}	[kg] [9,81 m/s²] [N]	(Mass acting on the drive wheel) Acceleration due to gravity (Maximum permissible radial force at the centre, of the wheel, see table permissible radial forces")

Selection is baded on the following: F_A<F_{BN}

Running wheel diameter d is determined by the plant engineer (preferred diameters: 125 mm, 160 mm, 200 mm, 300 mm). Criteria are wheel load and carriage design, for example.

2) The travelling speed is a further important criterion in the selection tables.

Two setting ranges are available for selection: 1:10 and 1:20. The full range of rated torques up to these frequencies are available. At higher frequencies, the torque decreases as a result of the speed range under field control. As a rule, geared motors with the 1:10 setting range are somewhat quieter in operation and those with the 1:20 setting range have smaller, less expensive motor components. The 1:20 setting range facilitates lower positioning speeds.

```
n_2 = \frac{v}{d \cdot \pi}
```

V	[m/min]	(Travelling speed)
n ₂	[1/min]	(Speed at the output shaft)
d	[m]	(Running wheel diameter)

3) Geared motor selection in accordance with the required acceleration torque M_{acc2} (specification: $M_{acc2} > M_{tot}$) and the permissible long-term rated torque M_{N2} (specification: $M_{N2} > M_r + M_h$).

The values for $M_{\rm acc2}$ and $M_{\rm N2}$ are contained in the selection tables. If acceleration torque $M_{\rm acc2}$ is not sufficient, the table usually provides higher values for torques $M_{\rm acc2}$ and $M_{\rm N2}$ at a higher permissible radial force $F_{\rm RN}.$

Torque from rolling friction [Nm]:

$$M_w = F_w \cdot \frac{d}{2} = m \cdot f_w \cdot \frac{d}{2}$$

Lift on gradient: [Nm]:

 $M_h = m \cdot g \cdot \sin \alpha \cdot \frac{d}{2}$

Acceleration torque [Nm]:

$$M_a = m \cdot a \cdot \frac{d}{2} = m \cdot \frac{v}{t_a} \cdot \frac{d}{2}$$

Project planning advice

Total torque required during acceleration [Nm]:

$\mathbf{M}_{tot} = \mathbf{M}_{W} + \mathbf{M}_{h} + \mathbf{M}_{a}$

 M_{acc2} = Torque [Nm] available at the output shaft during acceleration

 M_{N2} = Torque [Nm] available at the output shaft during continuous operation.

d	[m]	(Running wheel diameter)
m	[kg]	(Moving mass)
f _W	[N/kg]	(Rolling resistance form rolling friction per 1000 kg , guide value approcimately ca. 200 N / 1000 kg = 0.2 N/kg)
Fw	[N]	(Rolling resistance from rolling friction)
V	[m/s]	(Maximum travelling speed)
ta	[s]	(Run-up time)
а	[m/s²]	(Acceleration, standard values approximately 0,3 m/s ² 1 m/s ²)
α	[*]	(Angle of inclination)

4) Establishing the brake size in the brake selection table.

Choose a brake which can be fitted externally and then select the required braking torque.

Guide value for braking torque on the forizontal $M_{br1} = 0.9$ M_{N1} .

Total load and rotor at the moment of inertia at the rotor shaft [kgm²]

 $J_{tot1} = J_{Last1} + Jr_{ot} (+J_{SL})$ (J_{SL} , with heavy cast-iron fan impeller)

Load at the moment of inertia at the rotor shaft [kgm²]

$$J_{Last1} = m \cdot \frac{\left(\frac{d}{2}\right)^2}{i^2} \text{ oder } J_{Last1} = 91, 2 \cdot m \cdot \frac{v^2}{n_1^2}$$

Braking time [s]:

$$t_{br} \!=\! \frac{J_{tot1} \cdot n_1}{9,\!55 \cdot M_{br}}$$

 n1
 [1/min]
 Rotor shaft speed

 M_{br}
 [Nm]
 Brake torque of the mechanical brake

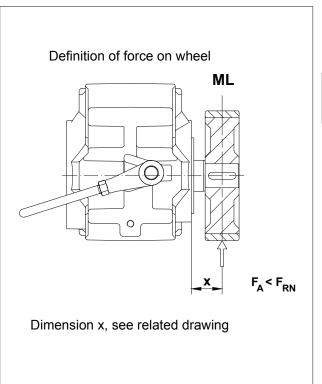
$$a_{br} = \frac{V}{t_{br}}$$

Rate of deceleration [m/s²]:

V	[m/s]	Travelling speed
abr	[m/s²]	Rate of deceleration

The calculated rate of deceleration abr is a guide value which is exceeded somewhat in practice since the rolling resistance and level of efficiency are not taken into account.

d	[m]	(Running wheel diameter))
m	[kg]	(Moving mass)
i		Gear reduction ratio
V	[m/s]	Travelling speed
n ₁	[1/min]	Rotor shaft speed
J_{rot}	[kgm²]	Moment of inertia of the rotor at the rotor shaft
		from the motor table
J_{SL}	[kgm ²]	Moment of inertia of the heavy cast-iron fan
		from the motor table


5) Compare the dimensional drawing of the geared motor with the carriage design, and determine the position of the terminal box.

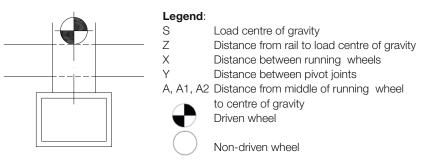
6) Compare the electrical data of the motor (IN und lacc) with the data of the inverter supplied.

d _{Wheel}	F _{RN}	Gear unit type	D _{Shaft}
in mm	in N		in mm
125	4400	BM09	20
125	6500	BM09X	25
125	8000	BM10	25
160	6500	BM09X	25
160	8000	BM10	25
200	8000	BM10	25
200	10000	BM10X	25
200	10000	BM20	30
200	12000	BM20X	30
200	12000	BM30(Z)	35
200	15000	BM30(Z)X	35
250	15000	BM30(Z)	35
250	20000	BM40(Z)	55
300	20000	BM40(Z)	55
300	25000	BM40(Z)X	55

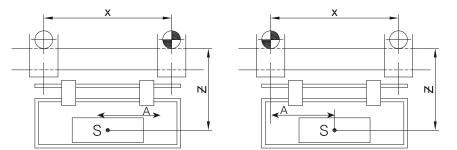
i

Permissible radial forces

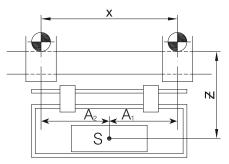
Abbreviations in the selection tables:

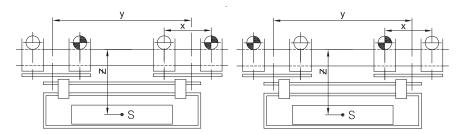

- Travelling speed of the wheel diameter at a synchronous speed V Gear reduction ratio
- M_{acc2} Acceleration torque at the output shaft
- Permissible permanent load torque at the output shaft M_{N2} between 30 and 50 or 30 and 87 Hz in inverter duty
- Acceleration current (must be produced by the inverter) I_{acc}
- Required current in inverter duty with $M_{\text{L}}=M_{\text{N2}}$ I_{L}
- Ρ Rated output
- Rated speed of the output shaft on a 50 Hz system n_2
- Permissible radial force at the centre of the wheel F_{RN} (see dimension diagram)
- Running wheel diameter d_{Wheel}
- Output shaft diameter d_{AW}

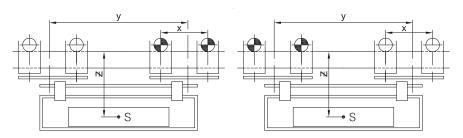
Gear Motor Selection


Project planning advice

Carriage design

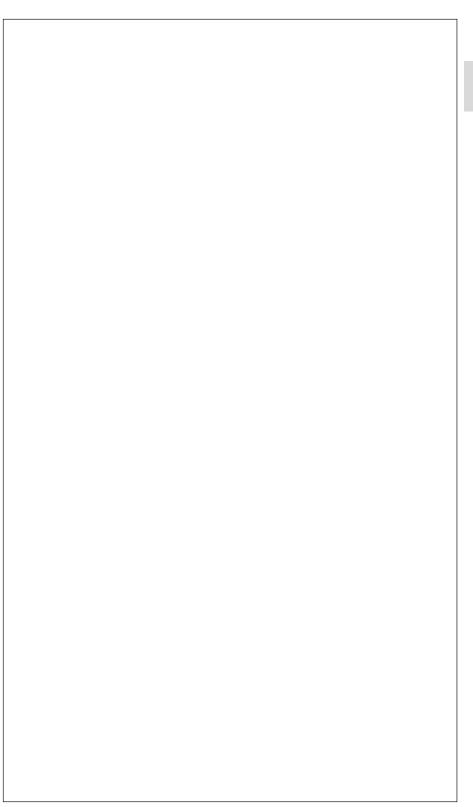

Prinzip "X/X" = "/" (Please enter principle used)
Prinzip "1/1": One running wheel / one driven wheel


Prinzip "1/2": Two running wheels / one driven wheel


Prinzip "2/2": Two running wheels / two driven wheels

Prinzip "1/4": four running wheels/with one driven wheel per trolley

Prinzip "2/4": four running wheels/two driven wheels per trolley



34

Gear Motor Selection Project planning advice

Note, "Principle 2/2" and "Principle 2/4" both involve carriages with two drives. Particular attention must be paid to cornering in such cases since different speeds will be present on the two drives when entering and exiting the corner; in practice this is resolved by the different motor slip on the two drives. This can cause considerable additional loading on the gear unit and motor, particularly where curves are tight and there are large distances between the drives wheels.

Please provide a sketch of your own principle here:

Gear Motor Selection

Selection of geared motors

A REGAL REXNORD BRAND	NR MOTOR [®]	国際	间 發	Informatic Company Contact p			
Eberhard-Bauer-Str. 37 73 +49 (0) 711 3518-0 www	•			Phone: Email:			
	Questio	nnair	re for ge	ared moto	r selecti	on	
Gearbox type							
BM Electric overhead conveyors	TIC						
Number of items:							
Country of operation:							
Trolley construction							
Trolley construction	□ 1/2 □] 2/2	□ 1/4	□ 2/4	□ Sonder		
Dimensions	Х	[mm]	Υ	[mm] Z		[mm]	
	А	[mm]	A1	[mm] A2	2	[mm]	
Operating Conditions							
Installation height (above sea level)	min	[m] [°C]	max	[°C]			
Mains voltage		[V]	Mains freque	ency		[Hz]	
Regulations							
Further information							
Technical data - drive							
Trolley mass			[kg]	Suspension gea	r mass		[kg]
Gear motor mass			[kg]	Transport load n	nass		[kg]
Wheel load of the driving w	/heel		[N]				
Radial force on the main sh	naft		[N]	Distance from sh	naft collar of		[mm]
Axial force on the main sha	ıft		[N]	Bogie wheel dia	meter d		[mm]
Bogie wheel material			[]	Minimum curve	radius		[m]
Angle of the sharpest curve	Э		[*]	Total track lengtl	1		[m]
Horizontal travel							
Travel velocity	max		[m/min]	Duty cycle			[%]
Number of start-ups per ho			[]				
Travel velocity	min		[m/min]	Duty cycle			[%]
Number of start-ups per ho	bur		[]				
Travel through curves			r / · 1				[0/]
Travel velocity	max		[m/min]	Duty cycle			[%]
Number of start-ups per he			[]	Duty avala			[0/]
Travel velocity (curve)	min		[m/min]	Duty cycle			[%]
Number of start-ups per ho Desired acceleration			[]	Desired decelor	tion		[m/s²]
Permissible braking distance			[m/s ²]	Desired decelera			
Permissible braking distance		n	[mm] [mm]	Requisite stoppi Number of start-			[mm] []
Coupling		-	manual coupl		chanical coupli	na	[]
Coupling and uncoupling p	ossible while loaded			NO		<u>د</u>	

Gear Motor Selection Selection of geared motors

Ascent				Length of ir	nclined track			[m]
Travel velocity			[m/min]	Duty cycle				[%]
Number of start-ups per hour			[]	Desired ac	celeration			[m/s ²
Desired deceleration			[m/s ²]	Permissible	braking distance du	uring operatio	n	[mm
Requisite stopping accuracy			[mm]		braking distance fo			[mm
Number of start-ups per hour			[]	Ascent ass	istance available	□ YES	□ NO	
Surface pressure			[N]					
Technical data - descent								
Descent			[]	Length of c	leclined track			[m
Travel velocity			[m/min]	Duty cycle				[%]
Number of start-ups per hour			[]	Desired ac	celeration			[
Desired deceleration			[m/s²]	Permissible	braking distance du	uring operatio	n	[mm
Requisite stopping accuracy			[mm]	Permissible	braking distance du	uring emerger	ncy stop	[mm
Number of start-ups per hour			[]	Ascent ass	istance available	□ YES	□ NO	
Surface pressure			[N]					
Further drive versions								
Mechanical brakes	□ YES	□ NO						
Manual release	□ YES	□ NO						
Brake supply voltage			[V]					
Brake rectifier	□ on trolle	ey control	panel	🗆 in termir	nal box			
Brake switching] DC	Motor prote	ction 🗆	PTC 🗆 thermo	ostat		
Motor connection	🗆 termina	al box		connector				
Main shaft								
Dimensions	dlx		[mm]	Model	with keywa	ay	without keywa	ау
Construction			[]	Terminal bo	ox position			[
RAL tone paint (Bauer-Standard RAL 7031)			[]					

Energy Efficient Geared Motors

Electric overhead conveyors series BM