Energieeffiziente GetriebemotorenAC Netzbetrieb / Europäische Union

Motoranbauten

Bremsen	489
Funktionsbeschreibung	489
Produktbeschreibung der Federkraftbremsen Typ ES(X)	489
Produktbeschreibung der Federkraftbremsen Typ ZS(X)	490
Auslegung Bremse	491
Elektrischer Anschluss	494
Technische Daten der Haltebremsen mit Notstopp-Eigenschaften	497
Technische Daten der Arbeitsbremsen	498
Anschluss	500
Gleichstromanschluss über Klemme (K)	500
Standard-Gleichrichter (S)	501
Gleichrichter für elektronische Schnellabschaltung (E)	502
Gleichrichter für Übererregung und Schnellabschaltung (M)	503
Bremsenanschluss bei Betrieb am Frequenz-Umrichter	505
Bremsenanschluss bei polumschaltbaren Motoren	505
Handlüftung (HA, HN)	505
Explosionsschutz	
Rücklaufsperre (RR, RL)	
Zweites Motor-Wellenende (ZW, ZV)	506
Schutzdach über der Lüfterhaube (D)	506
Fremdlüfter (FV)	
Technische Daten Fremdbelüftung	506
Gebersystem	507
Geber (G)	507
Inkrementaler Drehgeber	508
Funktionsbeschreibung	508
Elektrische Kennwerte	508
Ansichten auf Steckseite, Stiftkontakteinsatz	508
Anschlussbelegung	508
Absolut Drehgeber	509
Funktionsabeschreibung	509
PROFIBUS-DP Schnittstelle	509
SSI Schnittstelle	510
Modulares Motorsystem	511
Motor und Geber	511
Motor, Bremse und Geber	511
Motor und Fromdholüftung	511

Energieeffiziente Getriebemotoren

AC Netzbetrieb / Europäische Union

15

488 www.bauergears.com P-8409-BGM-DE-A4 05/23

Funktionsbeschreibung

Die Druckfedern drücken über die axial bewegliche Ankerscheibe die mit der Läuferwelle formschlüssig verbundene Bremsscheibe gegen die Reibplatte bzw. das Motorlagerschild. Das Bremsmoment wird erzeugt.

Durch Anlegen einer Gleichspannung an die Erregerwicklung im Magnetgehäuse entsteht eine Magnetkraft, wodurch die Ankerscheibe gegen die Federkraft vom Magnetgehäuse angezogen wird.

Der Bremsscheibe wird freigegeben und die Bremse ist gelüftet.

Je nach Art der Anwendung werden die Bremsen in Ihrer Funktion als Halte- oder Arbeitsbremse unterschieden.

Haltebremse ES.. / ZS..

Bremse, die im regulären Betrieb keine Reibarbeit umsetzt, sondern lediglich der Sicherung einer angefahrenen Position dient, jedoch im Notfall auch eine Abbremsfunktion ausüben kann.

Arbeitsbremse ESX.. / ZSX..

Bremse, die im regulären Betrieb Reibarbeit umsetzt, d.h. eine Abbremsfunktion ausübt. Bei Verwendung der Arbeitsbremse in Funktion als Haltebremse ist der Bremsmoment-Toleranzbereich von bis zu -30 % (Neuzustand) zu berücksichtigen.

Produktbeschreibung der Federkraftbremsen Typ ES(X)

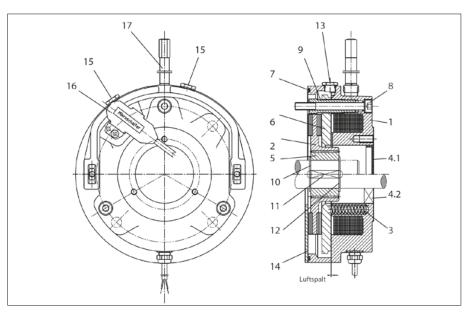


Bild 1: Aufbau ES(X)Bremse

Aufbau ES(X)Bremse

	• •		
1	Magnetgehäuse	9	Hohlschraube
2	Bremsscheibe	10	Sicherungsring
3	Druckfeder	11	Passfeder
4.1	Verschlusskappe bei geschlossener Bremse	12	Sicherungsring
4.2	Wellendichtring bei durchgehender Welle	13	Verschlussschraube zur Kontrolle des vorhandenen Luftspaltes
5	Mitnehmer	14	Reibplatte - nur bei Motorbaugröße D08 und D09
6	Ankerscheibe	15	Verschlussschraube zur Kontrolle der Mikroschaltereinstellung
7	O-Ring	16	Mikroschalter (optional)
8	Befestigungsschraube mit Kupferscheibe	17	Handlüftung (optional)

Bremsenanbau

ES und ESX: Bremsenanbau erfolgt unter der Lüfterhaube EH und EHX: Bremsenanbau erfolgt auf der Lüfterhaube

Ausführungsoptionen

- Handlüftung, nicht arretierbar oder arretierbar
- Mikroschalter zur Funktions- oder Verschleißüberwachung

15

Bremsen

Produktbeschreibung der Federkraftbremsen Typ ZS(X)

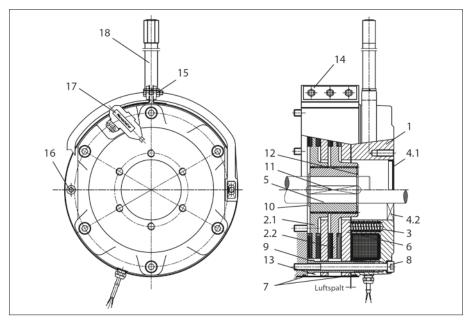


Bild 2: Aufbau ZS(X) Bremse

Aufbau ZS(X) Bremse

1 Magnetgehäuse	9 Hohlschraube
2.1 Bremsscheibe	10 Sicherungsring
2.2 Bremsscheibe	11 Passfeder
3 Druckfeder	12 Sicherungsring
4.1 Verschlusskappe	13 Abdeckung
4.2 Wellendichtring bei durchgehender Welle	14 Befestigungsschrauben
5 Mitnehmer	15 Blech
6 Ankerscheibe	16 Montageschraube/ Montaghilfe
7 O-Ringe	17 Mikroschalter (optional)
8 Befestigungsschraube mit Kupferscheibe	18 Handlüftung (optional)

Ausführungsoptionen

- Handlüftung, nicht arretierbar oder arretierbar
- Mikroschalter zur Funktions- oder Verschleißüberwachung

Bremsen

Auslegung Bremse

Die zu klein dimensionierte Arbeitsbremse hat erhöhten Verschleiß und verminderte Lebensdauer, die zu groß dimensionierte Bremse kann die mechanischen Übertragungsmittel des Antriebes zu hoch beanspruchen.

Sind keine spezifischen Daten der Anwendung bekannt, empfehlen wir das Bremsmoment bei horizontal angetriebenen Anlagen mit einer Sicherheit von $K=1,0\dots 1,5$ fach des Motorbemessungsmomentes zu wählen.

Bei Auslaufbremsung sollte das Bremsmoment mindestens gleich 80 % des Bemessungsmomentes des Antriebes gewählt werden.

Bemessungsmoment:

$$M_{Berf} = \frac{P \times 9550}{n_2} \times K$$
 M_{Berf} Bremsmoment [Nm]

 P Motorleistung [kW]

P Motorleistung [kW] n Bemessungsdrehzahl an der Läuferwelle [1/min]

Bei Hubbetrieb sollte aus Sicherheitsgründen immer das 2-fache Bemessungsmoment des Motors als Bremsmoment gewählt werden.

lst das Massenträgheitsmoment, die Drehzahl und die zulässige Verzögerungszeit der Maschine bekannt, so kann das Bremsmoment wie folgt berechnet werden.

Externe Massenträgheitsmomente

Laufen die von der Bremse zu verzögernden Massen mit einer anderen Drehzahl als die der Läuferwelle, so muss das Massenträgheitsmoment (Jext) auf die Läuferwelle reduziert werden.

$$J_{ext^{1}} = \frac{J_{ext1} \times n_{1}^{2} + J_{ext2} \times n_{2}^{2} + ... + J_{extn} \times n_{n}^{2}}{i^{2}}$$

bzw. über die Untersetzung des Getriebes auf die Läuferwelle reduziertes externes Massenträgheitsmoment.

$$J_{ext'} = \frac{J_{ext}}{i^2}$$

J_{ext} Gesamtes externes Massenträgheitsmoment [kgm²] J_{ext'} Gesamtes externes Massenträgheitsmoment bezogen

auf die Läuferwelle des Motors [kgm²]

J_{ext1,2...} Einzelne externe Massenträgheitsmomente [kgm²]

i Untersetzung Getriebe

n Drehzahl der Motor - Läuferwelle

n_{1,2}... Drehzahlen der einzelnen Massenträgheitsmomente [1/min]

Lastmoment bei statischer Belastung

$$M_L = F x r$$

M_L Lastmoment [Nm]

F Kraft [N]
r Hebelarm [m]

15

Bremsen

Bremsmoment bei dynamischer Belastung

Eine rein dynamische Belastung liegt vor, wenn Schwungräder, Walzen u. a. zu verzögern sind und das statische Lastmoment vernachlässigbar klein ist.

$$\mathsf{M}_{\mathsf{a}} \; = \; \frac{\mathsf{J}_{\mathsf{ges}} \times \mathsf{n}_{\mathsf{a}}}{9,55 \times (\mathsf{t}_{\mathsf{a}} \! - \! \mathsf{t}_{\mathsf{A}})} \; \; = \; \; \frac{(\mathsf{J}_{\mathsf{ext}} \! + \! \mathsf{J}_{\mathsf{rot}} \! + \! \mathsf{J}_{\mathsf{Br}}) \times \mathsf{n}_{\mathsf{a}}}{9,55 \times (\mathsf{t}_{\mathsf{a}} \! - \! \mathsf{t}_{\mathsf{A}})}$$

J_{Be} Trägheitsmoment der Bremse [kgm²]

J_{rot} Trägheitsmoment der Motor – Läuferwelle [kgm²]

M_a Verzögerungsmoment [Nm]

n_a Drehzahl ab der die Verzögerung eingeleitet wird [1/min]

 t_a Gesamte Verzögerungszeit (vom Abschalten bis Antrieb steht) [s] t_A Ansprechzeit der Bremse beim Bremsen (entspricht t_{AC} bzw. t_{DC}

in den Tabellen zu techn. Daten) [s]

Dynamische und statische Belastung

In den meisten Anwendungsfällen kommt zu einem statischen Lastmoment eine dynamische Belastung hinzu.

$$\mathbf{M}_{\mathrm{Berf}} = (\mathbf{M}_{\mathrm{a}} \pm \mathbf{M}_{\mathrm{I}}) \times \mathbf{K}$$
 wobei $\mathbf{M}_{\mathrm{Berf}} \leq \mathbf{M}_{\mathrm{Br}}$ sein muss.

M_L bremsendes (+) oder treibendes (-) Lastenmoment [Nm]

Schaltarbeit pro Bremsung

Die kinetische Energie der bewegten Massen wird durch Reibung in Wärme umgesetzt.

Sie beträgt

$$W = \frac{J_{ges} \times n^2}{182,5} = \frac{\left(J_{ext'} + J_{rot} + J_{Br}\right) \times n_a^2}{182,5} \qquad \text{wobei} \qquad W \leq W_{max} \quad \text{sein muss.}$$

W Schaltarbeit pro Bremsung [J]

M_{max} maximal zulässige Reibarbeit pro Bremsung (siehe Bremsentabelle)

Bremsen

Thermisch zulässige Schaltarbeit von Arbeitsbremsen

Bei einer gleichmäßigen Folge von Bremsungen, also einer gewissen mittleren Schalthäufigkeit pro Stunde, steigt die Erwärmung bis zu einem Gleichgewicht zwischen Erzeugung und Abgabe an. Die zulässige Temperatur soll unter Berücksichtigung der Umgebungstemperatur so liegen, dass weder Spule noch Reibbelag thermisch überfordert sind.

Auslaufbremsung

$$W_7 = W \times Z \leq W_{th}$$

Maximal zulässige Reibarbeit pro Stunde

 W_7 Reibarbeit bei Z Schaltungen Ζ Zahl der Bremsungen pro Stunde

Hubbetrieb

Beim Senkbetrieb wirkt der Antriebsmotor als Generator und sorgt durch seine Bremswirkung für eine gleichförmige Abwärtsbewegung. Sieht man von den Übertragungsverlusten ab, so muss der Antrieb bei Volllast mit Bemessungsmoment bremsen. Würde nach dem Abschalten des Antriebes eine mechanische Bremse mit einem Bremsmoment gleich dem Bemessungsmoment wirksam, so würde die Abwärtsbewegung unverzögert fortgesetzt. Für eine Abbremsung auf Stillstand ist also ein zusätzliches Bremsmoment erforderlich. Von einer für 200% Bemessungsmoment bemessenen Bremse werden also etwa 100 % >>statisch<< verbraucht und der Rest wird >>dynamisch<< zur Verzögerung genutzt.

Wird bei Senkbetrieb (Abwärtsbewegung) ein Teil des Bremsmomentes statisch für die Last benötigt, so ist die Rutschzeit und damit die thermische Beanspruchung höher.

Es gilt dann

$$W_{_{H}} = \frac{M_{_{Br}}}{M_{_{Br}} - M_{_{L}}} \times W_{_{Z}}$$

 W_H Reibarbeit pro Stunde bei Hubbetrieb

 $M_{\text{Br}} \\$ Bremsmoment der Bremse

Lebensdauer der Bremse

Durch die Reibarbeit beim Bremsen entsteht an der Bremsscheibe Verschleiß, der zu einer Zunahme des Arbeitsluftspaltes führt. Bei Überschreitung eines bestimmten Maximalluftspaltes ist das Magnetfeld so weit geschwächt, dass die Zugkraft des Magneten nicht mehr für eine Lüftung ausreicht. Zur Wiederherstellung des Anfangsluftspaltes muss, je nach Konstruktionsart, der Luftspalt nachgestellt oder die Bremsscheibe erneuert werden.

Die max. Anzahl der Bremsungen bis zu Wartung lässt sich wie folgt berechnen:

$$Z_L = \frac{W_L}{W}$$

Zahl der Bremsungen bis Grenzluftspalt erreicht wird Z_L

 W_L Maximal zulässige Reibarbeit bis zur Wartung, d.h. Wechsel der Bremsscheiben bzw. Luftspalt-Nachstellung. Eine Nachstellung des Luftspaltes ist nur bei Bremsentypen ZSX.. möglich.

Verzögerungszeit

Die reinen Bremszeiten vom Beginn der mechanischen Bremsung bis zum Stillstand werden von der Bremsverzögerung bestimmt.

Vor allem bei Hubbetrieb, aber auch bei anderen Antriebsarten, ist zu prüfen, ob das Lastmoment die Bremsung unterstützt oder aber ihr entgegenwirkt.

Damit wird die Verzögerungszeit wie folgt berechnet:

$$t_{a} = \frac{J_{ges} \times n_{a}}{9,55 \times (M_{Br} \pm M_{L})}$$

Bremsen

Elektrischer Anschluss

Allgemeines

Es gibt grundsätzlich 2 verschiedene Möglichkeiten für die Spannungsversorgung des Gleichstrom-Magneten:

- Extern aus einem bereits vorhandenen DC-Steuernetz oder durch einen Gleichrichter im Schaltschrank.
- 2. Durch einen im Motor- oder Bremsenklemmenkasten eingebauten Gleichrichter. Hierbei kann die Speisung des Gleichrichters entweder direkt vom Motorklemmenbrett oder aus dem Netz erfolgen.

In folgenden Fällen darf der Gleichrichter jedoch nicht am Klemmenbrett des Motors angeschlossen werden:

- Polumschaltbare Motoren und Weitspannungsmotoren
- Betrieb am Frequenzumrichter
- Sonstige Ausführungen, bei denen die Motorspannung nicht konstant ist,
 - z. B. Betrieb an Sanftanlaufgeräten, Anlasstransformatoren, ...

Lüften

Wird an die Magnetspule Nennspannung angelegt, so baut sich der Spulenstrom und damit das Magnetfeld nach einer Exponentialfunktion auf. Erst wenn der Strom einen bestimmten Wert (I_{Lüft}) erreicht hat, wird die Federkraft überwunden und die Bremse beginnt zu lüften.

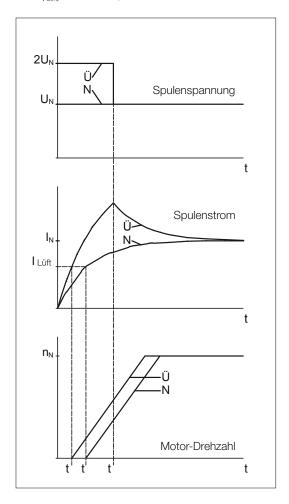


Bild 2: Prinzipieller Verlauf der Spulenspannung, des Spulenstroms und der Motordrehzahl bei Normalerregung (N) und Übererregung (Ü). t_{\bar{U}}: Übererregungszeit; t_{AN}, t_{A\bar{U}}: Ansprechzeiten bei Normal- und Übererregung.

Bremsen

Während der Ansprechzeit tA können 2 unterschiedliche Fälle auftreten, vorausgesetzt die Spannungsversorgung des Motors und der Bremse erfolgt zeitgleich:

Motor wird blockiert - Bedingung: M_A < M_L + M_{Br}
 Der Motor führt den Anzugsstrom und wird dadurch thermisch zusätzlich belastet.

Dieser Fall ist in Bild 3 dargestellt.

Bremse wird durchgerissen - Bedingung: M_A > M_L + M_{Br}
 Die Bremse wird auch beim Anlauf thermisch belastet und verschleißt schneller.

M_A: Anzugsmoment des Motors, M_L: Lastmoment, M_{Br}: Bremsmoment

In beiden Fällen ergibt sich also eine zusätzliche Belastung von Motor und Bremse. Die Ansprechzeit tritt mit zunehmender Bremsengroße immer stärker in Erscheinung. Eine Reduzierung der Ansprechzeit empfiehlt sich daher vor allem bei mittleren und großen Bremsen sowie bei hoher Schalthäufigkeit. Eine relativ einfache Realisierung auf elektrischem Wege ist durch das Prinzip der "Übererregung" möglich. Hierbei wird die Spule beim Einschalten kurzzeitig mit der doppelten Nennspannung betrieben.

Durch den damit verbundenen steileren Anstieg des Stroms wird im Vergleich zur "Normalerregung" die Ansprechzeit auf etwa die Hälfte vermindert. Diese Übererregungsfunktion ist im Sondergleichrichter des Typs MSG integriert.

Mit zunehmendem Luftspalt erhöht sich der Luftstrom und damit die Ansprechzeit. Sobald der Lüftstrom den Spulennennstrom überschreitet, lüftet die Bremse bei Normalerregung nicht mehr und die Verschleißgrenze der Bremsscheiben ist erreicht.

Bremsen

Nach dem Abschalten der Spannungsversorgung für die Spule wird das Bremsmoment nicht sofort wirksam. Zunächst muss die magnetische Energie so weit abgebaut werden, bis die Federkraft die Magnetkraft überwinden kann. Dies erfolgt bei der Haltestromstarke I_{Halte}, die weitaus kleiner ist als der Lüftstrom.

Abhängig von der schaltungstechnischen Ausführung ergeben sich unterschiedliche Ansprechzeiten.

Abschalten der AC-Versorgung des Standardgleichrichters SG

a) Speisung des Gleichrichters vom Motorklemmenbrett (Bild 4, Kurve 1) Ansprechzeit $t_{\rm A1}$: Sehr lang

Ursache: Nach Abschalten der Motorspannung wird durch die Remanenz des Motors eine langsam abklingende Spannung induziert, die den Gleichrichter und somit die Bremse weiterhin versorgt. Außerdem wird die magnetische Energie der Bremsenspule relativ langsam durch den Freilaufkreis des Gleichrichters abgebaut.

b) Separate Speisung des Gleichrichters (Bild 4, Kurve 2) Ansprechzeit t_{A2}: Lang

Ursache: Nach Abschalten der Gleichrichterspannung wird die magnetische Energie der Bremsenspule relativ langsam durch den Freilaufkreis des Gleichrichters abgebaut.

Bei wechselstromseitiger Unterbrechung treten keine nennenswerten Abschaltspannungen an der Magnetspule auf.

15

Bremsen

Unterbrechung des DC-Stromkreises der Magnetspule (Bild 4, Kurve 3)

- a) Durch mechanische Schalter
 - bei separater Speisung aus einem DC-Steuernetz oder
- an den DC-Schaltkontakten (A2, A3) des Standardgleichrichters SG

Ansprechzeit t_{A3}: Sehr kurz

Ursache: Die magnetische Energie der Bremsenspule wird sehr schnell durch den am Schalter entstehenden Lichtbogen abgebaut.

b) Elektronisch

Durch Verwendung eines Sondergleichrichters Typ ESG oder MSG Ansprechzeit t_{A3} : Kurz

Ursache: Die magnetische Energie der Bremsenspule wird schnell durch einen im Gleichrichter integrierten Varistor abgebaut.

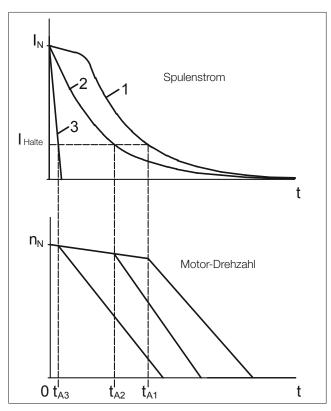


Bild 3: Prinzipieller Verlauf des Spulenstroms und der Motordrehzahl nach wechsel- (1, 2) und gleichstromseitiger (3) Abschaltung

Bei gleichstromseitiger Unterbrechung werden durch die Magnetspule Spannungsspitzen u_q induziert, deren Höhe gemäß folgender Beziehung von der Selbstinduktivität L der Spule und der Abschaltgeschwindigkeit di/dt abhängt:

$$u_q = L \cdot \frac{di}{dt}$$

Bedingt durch die Wicklungsauslegung steigt die Induktivität L mit zunehmender Spulen-Bemessungsspannung an. Bei höheren Spulenspannungen können daher die Abschaltspannungsspitzen gefährlich hoch werden. Aus diesem Grund werden alle Bremsen für Spannungen großer 24 V mit einem Varistor beschaltet.

Der Varistor dient lediglich dem Schutz der Magnetspule und nicht als Schutz von umgebenden elektronische Bauteilen bzw. Geräten gegen EMV-Störungen. Auf Anfrage können auch Bremsen für Spannungen kleiner oder gleich 24 V mit Varistor ausgeführt werden.

Erfolgt die gleichstromseitige Unterbrechung durch mechanische Schalter, so wird durch den entstehenden Lichtbogen an den Schaltkontakten starker Abbrand verursacht. Daher dürfen hierbei nur spezielle Gleichstromschütze oder angepasste Wechselstromschütze mit Kontakten der Gebrauchskategorie AC3 nach EN 60947-4-1 verwendet werden.

Bremsen

Technische Daten der Haltebremsen mit Notstopp-Eigenschaften

Die hier angegebenen max. zulässigen Reibarbeiten gelten nicht bei Bremsmotoren zum Einsatz in explosionsgefährdeten Bereichen. Siehe hierzu gesonderte Angaben in der entsprechenden Dokumentation für explosionsgeschützte Antriebe.

Тур	M_{Br}	W_{max}	W_{th}	W _L	t_A	t _{AC}	t _{DC}	Pel	J
	[Nm]	[10 ³ J]	[10 ³ J]	[10 ⁶ J]	[ms]	[ms]	[ms]	[W]	[10 ⁻³ kgm ²]
E003B9	3	1,5	-	-	35	150	15		
E003B7	2,2	1,8	-	-	28	210	20	20	0,01
E003B4	1,5	2,1	-	-	21	275	30		
E004B9	5	2,5	-	-	37	125	15		
E004B8	4	3	-	-	30	160	18		
E004B6	2,8	3,6	-	-	23	230	26	30	0,017
E004B4	2	4,1	-	-	18	290	37		,
E004B2	1,4	4,8	-	-	15	340	47		
ES/EH010AX	15*	3	-	-	110	-	30		
ES/EH010A9	10	3	-	-	60	100	15		
ES/EH010A8	8	3	-	-	55	150	20	0.5	0.045
ES/EH010A5	5	3	-	-	45	220	20	35	0,045
ES/EH010A4	4	3	-	-	30	250	20		
ES/EH010A2	2,5	3	-	-	25	350	25		
ES027AX	32*	2,5	-	-	80	-	30		
ES/EH027A9	27	2,5	-	-	120	100	15		0.470
ES/EH027A7	20	2,5	-	-	100	130	20	50	0,172
ES/EH027A6	16	2,5	-	-	80	170	25		
ES/EH040A9	40	3,5	-	-	100	100	20		
ES/EH040A8	34	3,5	-	-	80	200	25	65	0,45
ES/EH040A7	27	3,5	-	-	70	250	30		
ES/EH070AX	90*	3,5	-	-	120	-	40		
ES/EH070A9	70	3,5	-	-	120	150	18	0.5	0.00
ES/EH070A8	63	3,5	-	-	120	200	20	- 85	0,86
ES/EH070A7	50	3,5	-	-	90	220	25		
ES/EH125A9	125	4,5	-	-	170	220	25		
ES/EH125A8	105	4,5	-	-	150	320	28		
ES/EH125A7	85	4,5	-	-	135	350	30	105	4.00
ES/EH125A6	70	4,5	-	-	120	440	35	105	1,22
ES125A5	57	4,5	-	-	100	600	40		
ES125A3	42	4,5	-	-	90	700	45		
ES/EH200A9**	200	8	-	-	400	150	22		
ES/EH200A8**	150	8	-	-	280	250	35	105	2,85
ES/EH200A7**	140	8	-	-	200	320	35	1	
ES250A9**	250	9	-	-	300	500	45		
ES250A8**	200	9	-	-	200	960	60	1	
ES250A6**	150	9	-	-	160	1100	60	135	6,65
ES250A5**	125	9	-	-	150	1500	90		
ES250A4**	105	9	-	-	130	1800	110	1	
ZS300A9**	300	8	-	-	280	220	35	75	<i>F</i> 7
ZS300A8**	250	8	-	-	210	380	45	75	5,7
EH400A9**	400	10	-	-	300	600	60		
EH400A7**	300	10	-	-	200	850	75	180	19,5
EH400A5**	200	10	-	-	150	1400	85	1	10,0
ZS500A9**	500	9	-	-	320	320	50	100	400
ZS500A8**	400	9	-	-	260	600	60	100	13,3

^{*} nur mit MSG-Gleichrichter zulässig, da Übererregung erforderlich

Bremsmoment-Toleranz: -10 / +30 %

Keine Angabe zu W_{th} und W_{L} , da bei Haltebremsen im bestimmungsgemäßen Betrieb keine oder nur unwesentliche Reibarbeit umgesetzt wird.

Bei den mit * gekennzeichneten Bremsmoment-Ausführungen, die nur mit MSG-Gleichrichter zulässig sind, gelten die Werte für t_A und t_{DC} bereits für den Betrieb mit MSG-Gleichrichter, d.h. t_A bei Übererregung und t_{DC} bei elektronischer gleichstromseitiger Unterbrechung.

Abhängig von der Betriebstemperatur und bedingt durch Fertigungstoleranzen können die tatsächlichen Ansprechzeiten von den hier angegebenen Richtwerten abweichen.

^{**} nicht mit PMSM-Motoren der Reihe S kombinierbar

Bremsen

Technische Daten der Arbeitsbremsen

Die hier angegebenen max. zulässigen Reibarbeiten gelten nicht bei Bremsmotoren zum Einsatz in explosionsgefährdeten Bereichen. Siehe hierzu gesonderte Angaben in der entsprechenden Dokumentation für explosionsgeschützte Antriebe.

Тур	M _{Br}	W _{max}	W _{th}	W	L	t _A	t _{AC}	t _{DC}	Pel	J
	[Nm]	[10 ³ J]	[10 ³ J]	[10	³ J]	[ms]	[ms]	[ms]	[W]	[10-3
				ohne HL***	mit HL***					kgm²]
E003B9	3	1,5	36	55	55	35	150	15		
E003B7	2,2	1,8	36	90	90	28	210	20	20	0,01
E003B4	1,5	2,1	36	140	140	21	275	30	1 -	-,-
E004B9	5	2,5	60	50	50	37	125	15		
E004B8	4	3	60	100	100	30	160	18	1	
E004B6	2,8	3,6	60	180	180	23	230	26	30	0,017
E004B4	2	4,1	60	235	235	18	290	37	1	
E004B2	1,4	4,8	60	310	310	15	340	47	1	
ESX/EHX010AX	15*	3	250	120	120	110	-	30		
ESX/EHX010A9	10	3	250	120	120	60	100	15	1	
ESX/EHX010A8	8	3	250	150	150	55	150	20	0.5	0.045
ESX/EHX010A5	5	3	250	240	240	45	220	20	35	0,045
ESX/EHX010A4	4	3	250	300	240	30	250	20	1	
ESX/EHX010A2	2,5	3	250	390	240	25	350	25	1	
ESX027AX	27*	10	350	150	150	80	-	30		
ESX/EHX027A9	22	10	350	150	150	120	100	15		0.470
ESX/EHX027A7	16	10	350	300	300	100	130	20	50	0,172
ESX/EHX027A6	13	10	350	350	350	80	170	25	1	
ESX/EHX040A9	32	20	450	420	420	100	100	20		
ESX/EHX040A8	27	20	450	560	490	80	200	25	65	0,45
ESX/EHX040A7	22	20	450	700	490	70	250	30		,
ESX/EHX070AX	72*	28	550	700	700	120	-	40		
ESX/EHX070A9	58	28	550	500	500	120	150	18	0.5	0.00
ESX/EHX070A8	50	28	550	800	700	120	200	20	85	0,86
ESX/EHX070A7	40	28	550	1200	700	90	220	25	1	
ESX/EHX125AX	100*	40	700	1900	1900	100	-	70		
ESX/EHX125A9	85	40	700	1700	1700	150	320	28	1	
ESX/EHX125A8	70	40	700	1900	1700	135	350	30	105	4.00
ESX/EHX125A7	58	40	700	2700	1700	120	440	35	105	1,22
ESX125A5	45	40	700	3300	1700	100	600	40	1	
ESX125A3	34	40	700	3300	1700	90	700	45	1	
ESX/EHX200AX**	160*	60	850	2000	2000	105	-	70		
ESX/EHX200A9**	120	60	850	1700	1700	280	250	35	105	2,85
ESX/EHX200A8**	110	60	850	2600	2600	200	320	35		,
ESX250A9**	200	84	1000	2800	2800	300	500	45		
ESX250A8**	160	84	1000	6800	5700	200	960	60	1	
ESX250A6**	120	84	1000	8500	5700	160	1100	60	135	6,65
ESX250A5**	100	84	1000	11000	5700	150	1500	90		,,,,
ESX250A4**	85	84	1000	11000	5700	130	1800	110		
ZSX300A9**	250	60	850	1300	1300	280	220	35	7.5	
ZSX300A8**	200	60	850	2000	2000	210	380	45	75	5,7
EHX400A9**	320	120	1100	3000	3000	300	600	60		
EHX400A7**	240	120	1100	4800	4800	200	850	75	180	19,5
EHX400A5**	160	120	1100	6000	4800	150	1400	85	1	13,0
ZSX500A9**	400	84	1000	2800	2800	320	320	50		1
ZSX500A8**	320	84	1000	4000	4000	260	600	60	100	13,3
										1

^{*}nur mit MSG-Gleichrichterzulässig, da Übererregung erforderlich

Bremsmoment-Toleranz:

E003 / E004: -10 / +30 %

ESX.. / ZSX..: -20 / +30 % im eingelaufenen Zustand. Im Neuzustand sind bis zu -30 % möglich.

Bei den mit * gekennzeichneten Bremsmoment-Ausführungen, die nur mit MSG-Gleichrichter zulässig sind, gelten die Werte für t_{A} und t_{DC} bereits für den Betrieb mit MSG-Gleichrichter, d. h. t_{A} bei Übererregung und t_{DC} bei elektronischer gleichstromseitiger Unterbrechung.

Bei den Angaben zu W_L handelt es sich um Richtwerte, die abhängig vom jeweiligen Anwendungsfall erheblichen Schwankungen unterliegen können. Eine regelmäßige Kontrolle des Luftspaltes bzw. der Bremsscheibendicke wird empfohlen.

Abhängig von der Betriebstemperatur, dem Verschleißzustand der Bremsscheiben und bedingt durch Fertigungstoleranzen können die tatsächlichen Ansprechzeiten von den hier angegebenen Richtwerten abweichen.

^{**} nicht mit PMSM-Motoren der Reihe S kombinierbar

^{***}HL = Handlüftung

Bremsen

Zeichenlegende

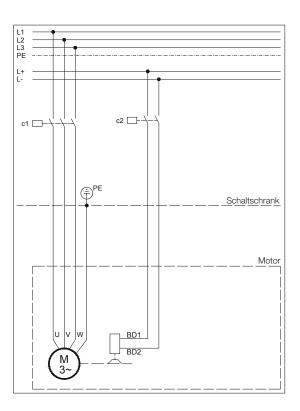
 M_{Br} Bemessungs-Bremsmoment W_{max} Maximal zulässige Reibarbeit für Notstopp bei Haltebremsen W_{max} Maximal zulässige Reibarbeit pro Bremsung bei Arbeitsbremsen W_{th} Maximal zulässige Reibarbeit pro Stunde W_{l} Maximal zulässige Reibarbeit bis zur Wartung, d. h. Wechsel der Bremsscheiben bzw. Luftspalt Nachstellung. Eine Nachstellung des Luftspaltes ist nur bei Bremsentypen ZSX.. möglich. HL Handlüftung Ansprechzeit beim Lüften mit Normalerregung. t_A Bei Übererregung durch den Sondergleichrichter MSG ergeben sich ca. halb so lange Ansprechzeiten. Ansprechzeit beim Bremsen mit wechselstromseitiger Abschaltung, d. h. durch t_{AC} Unterbrechung der Spannungsversorgung eines separat gespeisten Standard gleichrichters. Bei Spannungsversorgung des Gleichrichters von den Motoranschlussklemmen ist aufgrund der Remanenz des Motors - abhängig von Motorgrö-Be und Wicklungsauslegung – mit deutlich höheren Ansprechzeiten zu rechnen. t_{DC} Ansprechzeit beim Bremsen mit gleichstromseitiger Unterbrechung durch mechanische Schalter. Bei elektronischer gleichstromseitiger Unterbrechung durch einen Sondergleichrichter des Typs ESG oder MSG ergeben sich ca. 2-3 mal so hohe Ansprechzeiten. P_{el} Elektrische Leistungsaufnahme der Magnetspule bei 20 °C. Abhängig von der Spannungsausführung der Spule kann die tatsächliche Leistung

von dem hier angegebenen Richtwert abweichen.

J Massenträgheitsmoment von Mitnehmer und Bremsscheibe(n)

Bremsen

Anschluss


Der elektrische Anschluss der Bremse erfolgt im Motorklemmenkasten auf Klemmen oder Gleichrichter. Standard-Spannungen:

 $380 \dots 420 \ V \ 50/60 \ Hz$ (Bremsenspulenspannung $180 \ V \ DC)$ $220 \dots 230 \ V \ 50/60 \ Hz$ (Bremsenspulenspannung $105 \ V \ DC)$ $24 \ V \ DC$ (Bremsenspulenspannung $24 \ V \ DC$)

Andere Spannungen sind gegen Mehrpreis lieferbar.

Gleichstromanschluss über Klemme (K)

Die Bremse muss über separate Klemmen im Motor- bzw. Bremsenklemmenkasten direkt an Gleichspannung angeschlossen werden. Standardspannungen sind 180 V DC, 105 V DC und 24 V DC. Bremsen für andere Spannungen sind gegen Mehrpreis lieferbar.

15

500 www.bauergears.com P-8409-BGM-DE-A4 05/23

Bremsen

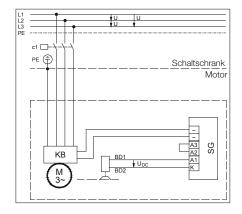
Standard-Gleichrichter (S)

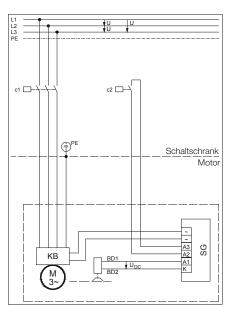
Funktionsprinzip Einweggleichrichter mit Kontakten für

gleichstromseitige Unterbrechung

Anschluss -40 ... +40 °C Käfigzugfederklemmen mit Betätigungsdrücker

Klemmbarer Leiterguerschnitt max. 1,5 mm² ohne Aderendhülse


max. 1,5 mm² mit Aderendhülse


Zulassungen c-CSA-us

c-UL-us (nur in Verbindung mit B2000-Getriebemotoren

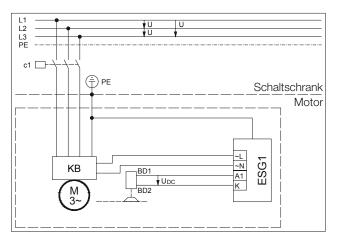
und Bremsen der Typenreihe ES(X)/ZS(X))

Die Bremse muss über den Standard-Gleichrichter im Motor- bzw. Bremsenklemmenkasten an Wechselspannung angeschlossen werden. Standardspannungen sind 380 ... 420 V 50/60 Hz oder 220 ... 230 V 50/60 Hz. Andere Spannungen bis 575 V sind gegen Mehrpreis lieferbar. Beim Standard-Gleichrichter kann der Bremsen-Stromkreis zur Verminderung der Ansprechzeit durch einen zusätzlichen Kontakt gleichstromseitig unterbrochen werden. Dies führt zu einer deutlichen Reduzierung der Bremszeit bzw. des Nachlaufweges.

Spannungsversorgung des Gleichrichters vom Motorklemmenbrett bzw. Klemmenblock KB (siehe Gleichrichteranschluss am Motorklemmenbrett bzw. Klemmenblock KB).

Bremsen

Gleichrichter für elektronische Schnellabschaltung (E) Funktionsprinzip


Anschlussspannung U₁

Einweggleichrichter mit elektronischer gleichstromseitiger Unterbrechung 220 - 460 V AC ±5 %, 50/60 Hz

Ausgangsspannung $0,45 * U_1 \lor DC$ max. Ausgangsstrom $1 \land DC$

Umgebungstemperatur -20 °C bis 40 °C Klemmbarer Leiterquerschnitt max. 1,5 mm²

Dieser Gleichrichter ermöglicht die gleichstromseitige Unterbrechung des Bremsenstromkreises auf elektronischem Weg. Es wird dazu keine zusätzliche Leitung zum Gleichrichter benötigt. Die Ansprechzeiten der Bremse verkürzen sich gegenüber der wechselstromseitigen Abschaltung wesentlich. Sie sind jedoch größer als bei gleichstromseitiger Unterbrechung mittels mechanischem Schalter. Die Bremse muss über den Schnellabschalt-Gleichrichter im Motor- bzw. Bremsenklemmenkasten an Wechselspannung angeschlossen werden. Standardspannungen sind 380 ... 420 V 50/60 Hz oder 220 ... 230 V 50/60 Hz. Andere Spannungen bis 460 V sind gegen Mehrpreis lieferbar.

Spannungsversorgung des Gleichrichters vom Motorklemmenbrett bzw. Klemmenblock KB (siehe Gleichrichteranschluss am Motorklemmenbrett bzw. Klemmenblock KB).

15

502 www.bauergears.com P-8409-BGM-DE-A4 05/23

Bremsen

Gleichrichter für Übererregung und Schnellabschaltung (M)

Funktionsprinzip MSG 1.5.480I

> Einweggleichrichter mit zeitlich begrenzter Übererregung und elektronischer gleichstromseitiger Unterbrechung Schnellab-

schaltung aufgrund fehlendem Motorstrom in einer Phase

Anschlussspannung U₁ Ausgangsspannung

220 - 480 V AC +6/-10 %, 50/60 Hz 0,9 * U₁ V DC während Übererregung 0,45 * U₁ V DC nach Übererregung

Übererregungszeit 0,3 s max. Ausgangsstrom Umgebungstemperatur

1,5 A DC -20 °C bis 40 °C

Klemmbarer

Leiterquerschnitt

max. 1,5 mm²

MSG 1.5.500U Funktionsprinzip

> Einweggleichrichter mit zeitlich begrenzter Übererregung und elektronischer gleichstromseitiger Unterbrechung Schnellab-

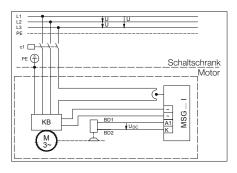
schaltung aufgrund fehlender Eingangsspannung

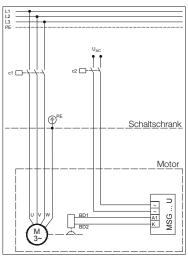
Anschlussspannung U₁ Ausgangsspannung

220 - 500 V AC ±10 %, 50/60 Hz 0,9 * U₁ V DC während Übererregung 0,45 * U₁ V DC nach Übererregung

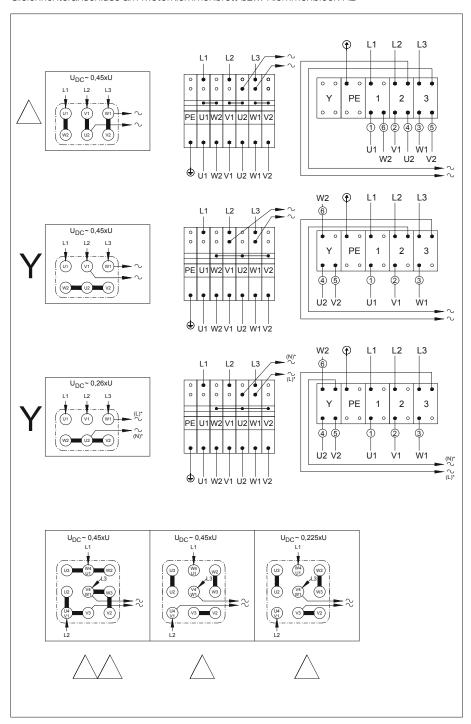
Übererregungszeit 0,3 s max. Ausgangsstrom

1,5 A DC


Umgebungstemperatur


-20 °C bis 40 °C

Klemmbarer Leiterquerschnitt


max. 1,5 mm²

Bei hoher Schalthäufigkeit des Motors kann die Bremse mit diesem Gleichrichter schneller gelüftet werden und reduziert dadurch die thermische Motorbelastung deutlich. Zusätzlich ermöglicht die gleichstromseitige Unterbrechung des Bremsenstromkreises auf elektronischem Weg eine wesentliche Verkürzung der Ansprechzeiten. Je nach Einsatzfall wird die Ausführung MSG 1.5.500 U (Schnellabschaltung aufgrund fehlender Versorgungsspannung) oder MSG 1.5.480 I (Schnellabschaltung aufgrund fehlendem Motorstrom in einer Phase) eingesetzt. Spannungsversorgung 220 ... 480 V AC.

Gleichrichteranschluss am Motorklemmenbrett bzw. Klemmenblock KB

Bremsen

Bremsenanschluss bei Betrieb am Frequenz-Umrichter

Bei Umrichterbetrieb ist die Spannung am Motorklemmenbrett frequenzabhängig. Bremsen benötigen eine konstante Spannung und daher einen separaten elektrischen Anschluss. Deshalb werden die Bremsen werkseitig grundsätzlich nicht mit den Motorklemmen verbunden.

Bremsenanschluss bei polumschaltbaren Motoren

Bei polumschaltbaren Motoren benötigt die Bremse einen separaten elektrischen Anschluss. Die Bremse wird auch in diesen Fällen werkseitig nicht mit den Motorklemmen verbunden.

Handlüftung (HA, HN)

Alle Bremsen sind auf Wunsch mit mechanischer Handlüftung lieferbar. Standardausführung ist die nicht arretierbare Handlüftung (HN), auf Wunsch ist auch eine arretierbaren Handlüftung (HA) lieferbar.

Explosionsschutz

Bremsen in explosionsgefährdeten Bereichen unterliegen besonderen Vorschriften. In diesen Sonderfällen bitte anfragen.

Rücklaufsperre (RR, RL)

Motoren der Größen D..08 bis D..22 sind mit Rücklaufsperre lieferbar. Die Sperrichtung rechts (RR) oder links (RL) bitte bei Bestellung angeben. Bezug ist der Blick auf die Anbauseite des Getriebes. Bei nicht eindeutig definierter Anbauseite wird Getriebeseite **V** (vorne) zu Grunde gelegt (siehe Kapitel 16 Maßbild "Motor mit Rücklaufsperre").

Bei Betrieb am Frequenzumrichter ist zu beachten, dass der einwandfreie Betrieb der Rücklaufsperre nur mit Läuferdrehzahlen über 740/min gewährleistet ist.

Bei Einsatzfällen in korrosiver Atmosphäre, besonders bei Aufstellungen mit nach unten hängendem Motor, empfiehlt sich eine Rückfrage.

Bremsen

Zweites Motor-Wellenende (ZW, ZV)

Die Motoren sind auf Wunsch mit zweitem Motorwellenende in Ausführungen ZW (Welle mit Passfeder) oder ZV (Welle mit Vierkant) lieferbar.

Mit diesem Wellenende ist bei zentralem Antrieb die Hälfte der Bemessungsleistung übertragbar. Zulässige Radialbelastung auf Anfrage. Abdeckungen gehören nicht zum Lieferumfang (siehe Kapitel 16).

Auch Motoren mit Bremse sind mit zweitem, über die Bremse hinaus verlängertem Motorwellenende lieferbar.

Schutzdach über der Lüfterhaube (D)

Bei Aufstellung im Freien mit starker oder lang anhaltender Wassereinwirkung wird bei nach oben zeigendem Motor die Verwendung eines Schutzdaches über der Lüfterhaube empfohlen (siehe Kapitel 16).

Bei Explosionsgeschützten Motoren ist diese Schutzhaube bei Vertikalbauform Vorschrift.

Eine Lüfterhaube in Spezialausführung für die Textilindustrie ist auf Anfrage gegen Mehrpreis lieferbar. Diese Version verhindert das Zusetzen der Lüfterhaube durch Textilfasern oder Flusen.

Fremdlüfter (FV)

Für spezielle Anwendungsfälle sind die Motoren und die Bremsmotoren ab Größe D..08.. mit angebautem Fremdlüfter lieferbar (Maßbild für Fremdlüfter siehe Kapitel 16).

Die Fremdlüfter werden bei Standardmotoren der Größen D..16.., D..18.. und Bremsmotoren D..11.. bis D..18.. mit Bajonett-Befestigung geliefert.

Technische Daten:

Multivolt-Konzeption Betriebskondensator standardmäßig eingebaut für Einphasenbetrieb.

Technische Daten Fremdbelüftung

Dataiahaast	D	Lüfterdurch- messer	Spannun	gsbereich	max.zuläss	siger Strom	max. Leistungsaufnahme		
Betriebsart	Baugröße	[mm]	[/	/]	[/	\]	[W]		
			50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	
	63	118	230-277	230-277	0,18	0,21	46	54	
	71	132	230-277	230-277	0,18	0,21	48	56	
	80	150	230-277	230-277	0,19	0,22	48	59	
1 . (/\)	90	169	220-277	220-277	0,29	0,23	59	61	
1 ~ ⊥ (△)	100	187	220-277	220-277	0,29	0,28	62	73	
	112	210	220-277	220-277	0,27	0,36	64	88	
	132	250	230-277	230-277	0,52	0,61	125	163	
	160-200	300	230-277	230-277	1,05	1,52	246	390	
	63	118	346-525	380-575	0,09	0,08	28	29	
	71	132	346-525	380-575	0,09	0,07	29	28	
	80	150	346-525	380-575	0,09	0,07	33	36	
3 ~ Y	90	169	346-525	380-575	0,22	0,18	78	71	
3~1	100	187	346-525	380-575	0,21	0,18	80	80	
	112	210	346-525	380-575	0,2	0,17	87	93	
	132	250	346-525	380-575	0,37	0,32	160	180	
	160-200	300	346-525	380-575	0,74	0,62	314	391	
	63	118	200-303	220-332	0,15	0,14	28	29	
	71	132	200-303	220-332	0,15	0,13	29	28	
	80	150	200-303	220-332	0,16	0,13	33	36	
3 ~ Δ	90	169	200-303	220-332	0,39	0,32	78	71	
S ~ Δ	100	187	200-303	220-332	0,37	0,3	80	80	
	112	210	200-303	220-332	0,35	0,29	87	93	
	132	250	200-303	220-332	0,64	0,55	160	180	
	160-200	300	200-303	220-332	1,28	1,08	314	391	

Gebersystem

Geber (G)

Für besondere Anforderungen können Bauer-Getriebemotoren wahlweise mit angebautem Impulsgeber oder Absolutwertgeber geliefert werden. Der Standard Impulsgeber und der Absolutwertgeber sind optimal zum Einsatz an allen modernen Frequenzumrichtern geeignet.

Bauer Standardgeber sind ab Motorgröße D..05.. (0,18 kW) durch einer robusten Schutzhaube gegen mechanische Beschädigung geschützt (Zusatzmaßbild siehe Kapitel 16).

Besondere Eigenschaften: Standard Impulsgeber:

- Robuste Lagerung
- EMV geprüft
- Verpolungssicher
- Versorgungsspannung 8-30 V DC
- A-, B- und N-Spur und invertierte Signale oder Ausgangssignale wählbar
- HTL-Ausgangssignale (TTL auf Anfrage)
- 1024 Impulse pro Umdrehung

Besondere Eigenschaften: Standard Absoultwertgeber

- Schritte pro Umdrehung: 8192 (13 Bit)
- Anzahl der Umdrehungen: 4096 (12 Bit)
- Ausführung der Elektronik: SSI (Synchron Serielles Interface)
- Ausgabecodeart: Gray-Code
- Versorgungsspannung: II-27 V DC
- Verlustleistung (ohne Last): ≤3 Watt
- Datenausgang: RS-422 (2-Draht)

19

Inkrementaler Drehgeber

Funktionsbeschreibung

Inkrementalgeber (Impulsgeber / Encoder) dienen zur Ermittlung der Position von Motorwellen. Eine Rotationsbewegung wird in diesem Inkrementalgeber verarbeitet und als elektrisches Signal ausgegeben. Eine Impulsscheibe mit einer bestimmten Anzahl von Perioden pro Umdrehung erfasst Winkelschritte. Die optoelektrische Abtasteinheit erzeugt Signale und gibt Impulse aus, die zuvor in Triggerstufen aufbereitet werden. Über die Zahl der Hell-Dunkel-Segmente auf der Impulsscheibe wird die Auflösung definiert. So wird bei einem Impulsgeber mit 1024 Strichen entsprechend bei einer Umdrehung eine Signalfolge von 1024 Impulsen ausgegeben.

Mit Frequenzumrichtern kombiniert bieten sich optimierte Lösungen an, wie z. B.:

- Drehzahlregelungen mit großem Verstellbereich
- hohe Drehzahlgenauigkeit
- Gleichlaufregelung
- Positionierregelung

Versorgungsspannung: 8-30 V DC bei HTL

5 V DC bei TTL Gegentakt

Ausgangssignal: HTL A-, B-, N-track, Optional TTL

Impulse pro Umdrehung: 1024,

Optional 1...65536

Schutzgrad: IP65, optional IP67
Temperaturbereich: -40 °C up to +100 °C

Elektrische Kennwerte

Ausgangsspannung	RS 422 (TTL-kompatibel)	RS 422 (TTL-kompatibel)	Gegentakt	Gegentakt (7272)
Versorgungsspannung:	5 30 V DC	5 V ±5 %	8 30 V DC	5 30 V DC
Stromaufnahme (ohne Last) mit Invertierung:	max. 70 mA	max. 70 mA	max. 70 mA	max. 70 mA
Zul. Last/Kanal: Impulsfrequenz:	max.±20 mA max. 300 kHz	max.±20 mA max. 300 kHz	max.±20 mA max. 160 kHz	max.±20 mA max. 160 kHz
Signalpegel high:	min. 2,5 V	min. 2,5 V	min UB - 3 V	min. UB-3 V
Signalpegel low:	max. 0,5 V	max. 0,5 V	max. 1 V	max. 1 V

Ansichten auf Steckseite, Stiftkontakteinsatz

Steckertyp	8-poliger M12-Stecker	12-poliger M23-Stecker	MIL-Stecker 10-poliger
Skizze	3 8 2 4 1 7 5 6	N 1 9 8 2 10 12 7 3 6 6	
Bestellschlüssel:	8.5000.XXX3.XXXX 8.5000.XXX4.XXXX	8.5000.XXX7.XXXX 8.5000.XXX8.XXXX	8.5000XXXY.XXXX
Passender 05.CMB-8 Gegenstecker:	181-0	8.0000.5012.0000	8.0000.5062.0000

Anschlussbelegung

Signal:	0 V GND	+U _B	0 V Sens	+Ub Sens	А	Ā	В	Ē	Z	Ī	Schirm
M23 multifast, 12-pol. Stecker, Pin:	10	12	11	2	5	6	8	1	3	4	1)
M12 eurofast, 8-pol. Stecker, Pin:	1	2			3	4	5	6	7	8	1)
Militär, 10-pol. Stecker, Pin:	F	D		E	Α	G	В	Н	С	1	J1)
Kabel, Aderfarbe:	WH	BN	GY PK	RD BU	GN	YE	GY	PK	BU	RD	Schirm

¹⁾ Schirm liegt am Steckergehäuse an.

Unbenutzte Ausgänge sind vor Inbetriebnahme zu isolieren.

Motoranbauten Absolut Drehgeber

Funktionsabeschreibung

Absolutwertgeber (Absolut - Encoder) erfassen Winkel- als auch Rotationsbewegungen und formen diese in elektrische Signale um. Bei einem Absolutwertgeber steht der momentane Positionswert unmittelbar zur Verfügung im Gegensatz zum zu inkrementalen Messmechanismen. Wird dieses absolute Messsystem im ausgeschalteten Zustand mechanisch verfahren, ist nach Wiedereinschalten der Spannungsversorgung die aktuelle Position unmittelbar und direkt auslesbar. Die Absolutwertgeber sind je nach Ausführung in Single- oder Multiturn lieferbar.

PROFIBUS-DP Schnittstelle

Kenndaten

Ausgabecode 1)

Versorgungsspannung 11...27 V DC Stromaufnahme ohne Last < 350 mA

Gesamtauflösung 1) \leq 33 Bit

Schrittzahl/Umdrehung, Standard/erweitert 1) $\leq 8.192 / \leq 32.768$ Anzahl Umdrehungen, Standard/erweitert 1) $\leq 4.096 / \leq 256.000$ Profibus-DP V0 IEC 61158, IEC 61784

PNO Encoder-Profil Klasse 1 und 2

- Parameter ¹) Zählrichtungsumschaltung,

Skalierungsfunktion etc. Binär, Gray, gekappter Gray 3...99, einstellbar über Drehschalter

Adressierung 3...99, einstellbar über Dre Baudrate 9,6 kbit/s...12 Mbit/s TR-spezifische Funktionen 1) Getriebe, Geschwindigkeitsausgabe

Datenbreite für Istposition auf dem Bus ≤ 25 Bit

Mechanisch zulässige Drehzahl ≤ 12.000 min⁻¹ Wellenbelastung Eigenmasse

Lagerlebensdauer ≥ 3,9 * 10¹⁰ Umdrehungen bei

- Drehzahl \leq 6.000 min-1 - Betriebstemperatur \leq 60 °C Wellendurchmesser in mm 10 H7 Zulässige Winkelbeschleunigung \leq 10⁴ rad/s²

Trägheitsmoment typisch 2,5 * 10⁻⁶ kg m²

Anlaufdrehmoment bei 20 °C typisch 2 Ncm

Masse 0,3 kg...0,5 kg

Umgebungsbedingungen

 $\begin{array}{lll} \mbox{Vibration, DIN EN 60068-2-6: 1996} & \leq 100 \mbox{ m/s}^2, \mbox{Sinus 50-2000 Hz} \\ \mbox{Schock, DIN EN 60068-2-27: 1995} & \leq 1000 \mbox{ m/s}^2, \mbox{Halbsinus 11ms} \\ \end{array}$

EMV

- Störaussendung, DIN EN 61000-6-3: 2007 - Störfestigkeit, DIN EN 61000-6-2: 2006

Arbeitstemperatur 0 °C...+60 °C, optional -20 °C...+70 °C

Lagertemperatur -30 °C...+80 °C, trocken Relative Luftfeuchte, DIN EN 60068-3-4: 2002 98 %, keine Betauung

Schutzart, DIN EN 60529: 1991 ²) IP65

¹⁾ programmierbarer Parameter

²⁾ gültig mit aufgeschraubtem Gegenstecker und/oder verschraubter Kabelverschraubung

Absolut Drehgeber

SSI Schnittstelle

Kenndaten

Versorgungsspannung 11...27 V DC Stromaufnahme ohne Last < 350 mA Gesamtauflösung ¹) $\leq 25 \text{ Bit}$ Schrittzahl/Umdrehung ¹) ≤ 8.192 Anzahl Umdrehungen, Standard ¹) ≤ 4.096 Anzahl Umdrehungen, erweitert ¹) ≤ 256.000

SSI Synchron-Serielle-Schnittstelle

TakteingangOptokopplerDatenausgangRS-422, 2-DrahtTaktfrequenz80 kHz - 1 MHz

Monozeit t_M 16 $\mu s \le t_M \le 25 \ \mu s$, typisch 20 μs

Ausgabecode 1) Binär, Gray, BCD

Ausgabeformat 1) Standard, Tannenbaum, SSI+CRC, 26-Bit Wiederholung, variable Anzahl

Datenbits

negative Werte 1) Vorzeichen + Betrag, 2er Komplement

SSI- oder parallele Sonderbits 1) Endschalter, Überdrehzahl,

Richtungsmeldung, Bewegungsmeldung,

Fehlermeldung, Parity

V/R ¹) Zählrichtung
Preset ¹) elektronische Justage

Logischer Zustand "0" < + 2 VDC, "1" = Versorgungsspannung

Mechanisch zulässige Drehzahl ≤ 12.000 min⁻¹ Wellenbelastung Eigenmasse

Lagerlebensdauer ≥ 3,9 * 10¹⁰ Umdrehungen bei

 $\begin{array}{ll} - \ \, \text{Drehzahl} & \leq 6.000 \ \, \text{min-1} \\ - \ \, \text{Betriebstemperatur} & \leq 60 \ ^{\circ}\text{C} \\ \text{Wellendurchmesser in mm} & 10\text{H7} \\ \text{Zulässige Winkelbeschleunigung} & \leq 10^4 \ \text{rad/s}^2 \end{array}$

Luiassige winkeibeschleunigung \leq 104 rad/s2

Trägheitsmoment typisch 2,5 * 10-6 kg m²
Anlaufdrehmoment bei 20 °C typisch 2 Ncm
Masse 0,3 kg...0,5 kg

Optional

- Inkrementalsignale, RS422-Pegel K1+, K1-, K2+, K2- mit 1024 oder 2048

Impulsen

Umgebungsbedingungen

Vibration, DIN EN 60068-2-6: 1996 \leq 100 m/s², Sinus 50-2000 Hz Schock, DIN EN 60068-2-27: 1995 \leq 1000 m/s², Halbsinus 11ms

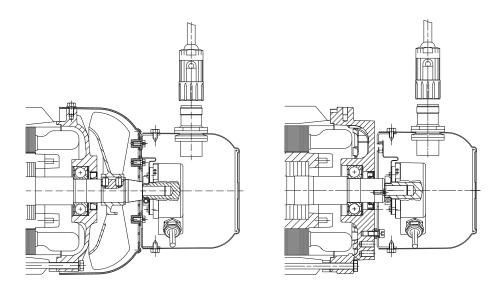
EMV

- Störaussendung, DIN EN 61000-6-3: 2007 - Störfestigkeit, DIN EN 61000-6-2: 2006

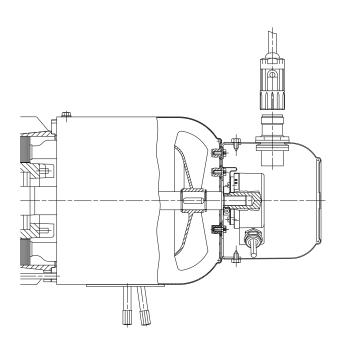
Arbeitstemperatur 0 °C...+60 °C, optional -20 °C...+70 °C

Schutzart, DIN EN 60529: 1991 2) IP65

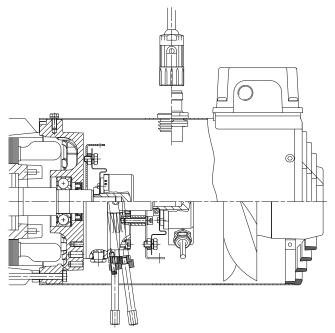
Multiturngeber erfassen außer den Winkelpositionen pro Umdrehung zusätzlich noch mehrere Umdrehungen. Ein internes Untersetzungsgetriebe ist mit der Motorwelle verbunden, über welches die Anzahl der Umdrehungen ermittelt wird. Der Messwert eines Multiturngebers setzt sich also aus der jeweiligen Winkelposition und der Anzahl der Umdrehungen zusammen. Der ermittelte Messwert wird ebenfalls kalkuliert und je nach Schnittstelle über unterschiedliche Interface-Module ausgegeben.


Auf Anfrage ist für eine ganze Reihe von Motorbaugrößen die Verwendung von Sensorlagern möglich. Das Ausgangssignal des Sensors macht eine Bestimmung der Drehrichtung z. B. möglich. Die Anzahl der möglichen Impulszahlen ist baugrößenabhängig. Wir bitten um Anfrage!

¹⁾ programmierbarer Parameter


²⁾ gültig mit aufgeschraubtem Gegenstecker und/oder verschraubter Kabelverschraubung

Modulares Motorsystem


Motor und Geber

Motor, Bremse und Geber

Motor und Fremdbelüftung

15

Energieeffiziente Getriebemotoren

AC Netzbetrieb / Europäische Union

512 www.bauergears.com P-8409-BGM-DE-A4 05/23