
TABLE OF CONTENTS

INTRODUCTION1-2	
PRODUCT SELECTION/REFERENCE GUIDE3-6	
NONREGENERATIVE AND REGENERATIVE, DC CONTROLLERS7-37	
OPTIONS AND MODIFICATIONS FOR DC CONTROLLERS38-46	
ACCESSORIES47-53	
CLUTCHES AND BRAKES55-80	
MOTOR ENCLOSURES81	
DC MOTORS83-91	
AC MOTORS93-109	
WASHDOWN PRODUCTS111-112	
APPLICATION ENGINEERING113-127	
TERMS AND CONDITIONS128-129	

BOSTON GEAR®, RATIOTROL®, RATIOPAX®, ACE®, DCX® and DCXplus® are registered trademarks of Boston Gear.

PRODUCT SELECTION/REFERENCE GUIDE

PRODUCT SELECTION/REFERENCE GUIDE

Accessories

Remote Stations

Pages 47-48

Tachometer Generator

Pages 49-50

Page 51

Analog Meter

Page 52

Digital Meter

Page 52

Clutches and Brakes

DC C-Face

Page 57-58

DC Foot Mounted

Page 59-62

DC Shaft Mounted

Pages 63-76

AC C-Face

Page 77

AC C-Face Washdown

Pages 78-79

AC Motor Brake Kit

Page 80

DC Motors

Permanent Magnet

Pages 86-87

Permanent Magnet-Washdown

Page 88

Shunt Wound

AC Motors

Open Dripproof

Pages 95-96

Totally Enclosed

Page 97-102

Washdown

Page 103

Brake Motors

Pages 104-105

Rigid Base

Page 107

Inverter Duty

Pages 108-109

RATIOTROL SYSTEMS

System Selection

The proper selection of a Ratiotrol system is based on first determining the load torque, second, the horsepower of the motor and last, the type and configuration of the controller to power the selected motor. Sizing an adjustable speed drive generally is no different than selecting a motor and reducer for a constant speed application. Maximum RPM and maximum torque are used in all calculations involving constant torque applications, which are the most common. Our standard Ratiotrol systems are constant torque drives and therefore, selection is straight forward.

Constant horsepower applications, typically winders or machine tools, require the use of the maximum load torque (usually at the minimum speed) in selecting a suitable drive. If the required constant HP value is known, the required system HP is equal to the required speed range ratio multiplied by the constant HP figure.

NOTE: Auxiliary drives beyond the reducer output shaft can reduce the cost of a system significantly since a chain or gear drive multiplies the torque delivered by the reducer, thereby reducing the load required to be driven by the reducer. For instance, if a 3:1 ratio chain drive can be incorporated in a drive train, the driven load (torque) can be divided by 3 and the load speed multiplied by 3 before selecting a suitable motor and reducer combination.

SELECTION PROCEDURE:

1) Select a reducer as you would for a constant speed application and size the motor/controller package to provide the HP indicated by the reducer's input HP rating.

Note: When using compound worm gear reducers with ratios greater than 200:1, use a motor with twice the HP shown for that reducer. This technique will provide sufficient starting torque at low motor speeds to overcome the near-static friction conditions present in the output bearings and gearing of the reducer.

- 2) The motor selected in Step 1 determines the "System HP" to use when you progress to the Ratiotrol System Selection Guides.
- 3) From the Selection Guide, proceed to the appropriate AC or DC Controller section to determine the complete motor and controller catalog numbers, options and any desired accessories.

SINGLE PHASE DC CONTROLLER SELECTION GUIDE											
System	Line Voltage	Nonregenerative				Regenerative		Motor Series*			
HP	(VAC)	Ratiopax	DCX	BETA II	BETAplus	VEplus	RBA-RG	VEA-RG	PM	Shunt	
1/12	115	•	•						BPM/PM908T	_	
1/6	115	•	•	•	•	•	•	•	PM916	V91600	
1/4	115	•	•	•	•	•	•	•	PM925	V92500	
1/3	115	•	•	•	•	•	•	•	PM933	V93300	
1/2	115	•	•	•	•	•	•	•	PM950	V95000	
1/2	230	•	•	•	•	•	•	•	PM1850	_	
0/4	115		•	•	•	•	•	•	PM975	V97500	
3/4	230	•	•	•	•	•	•	•	PM1875	V18750	
4	115		•	•	•	•	•	•	PM9100	V91000	
1	230	•	•	•	•	•	•	•	PM18100	V18100	
1-1/2	230		•	•	•	•	•	•	PM18150	V18150	
2	230		•	•	•	•	•	•	PM18200	V18200	
3	230		•	•	•	•	•	•	PM18300	18300	
5	230					•		•	PM18500	18500	

^{*}Basic DC Motor Catalog number, refer to Pages 86-87 for complete motor selection.