
In-Line Speed Reducers Moduline® Type R

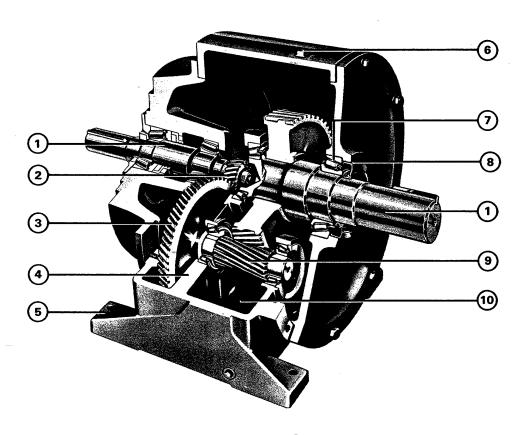
Moduline Type R concentric shaft speed reducers reflect many years of experience in gearing products utilizing the flexibility of the modular concept to provide readily available drives, closely tailored to the popular horsepower selections for actual application requirements.

Moduline speed reducers are designed in accordance with all applicable AGMA Standards and Nuttall Gear's traditionally conservative design criteria. Standard ratios are used which provide a broad range of output speeds to fit most applications. A removable high speed end facilitates ratio changes or other servicing.

Moduline Type R Speed Reducers can be driven by electric motors, gasoline engines, diesel engines, power take-off shafts and line shafts. They may be direct-connected by a coupling or offset-connected by means of a chain and sprocket or belt and pulley.

Moduline Speed Reducers can be arranged for floor, wall or vertical mounting. Accessories and modifications include bedplates, outboard bearings, backstops, cooling fans, motor mounts, C-Flange adaptors, flexible couplings, taconite seals, OSHA approved coupling guards and special Marine duty features.

INDEX


Section	Page	Section	on	Page
Construction Features 250 How to Select/Order 250 Ratings & Pricing 250 1750 Input 250 1430 Input 250 1170 Input 250 870 Input 250 Mounting Positions 255	3 4-7 8-11 12-15 16-19	Engineering Data Exact Gear Ratios	57 57 57	1 2, 3 4, 5 6 1-8
Modifications	2-4	X		

Effective: 1, August 1984

FEATURES

In-Line Speed Reducers Type R

Moduline®

- 1 Input and output shafts of chrome-moly steel are supported on wide bearing spans to provide generous overhung load capacity.
- The high speed pinion and gear are mounted on splined shafts. The splines are cold rolled and the major diameters ground to close tolerances to assure concentricity of the gear and pinion with the shaft. This design permits easy change in the high speed gear set.
- (3) All gears and pinions are made of high quality chromemoly steel generated on Pfauter hobbers, and then heat treated by a special lon Nitriding process. This assures gears of consistent accuracy, resulting in long trouble-free life and quiet operation.
- A sturdy-one piece cast iron housing with integrally cast machined bearing supports provides proper internal alignment of components. The inherent corrosion resistance of cast iron allows placement of the unit in many severe atmospheres without special finishes.
- Rugged feet are integrally cast on double, triple and qualdruple reduction units to provide maximum strength. Foot pads are accurately milled to assure ease of alignment.

- 6 A combination breather-filler plug keeps overall height at a minimum.
- 7 Single row tapered roller bearings are used on all shafts. These bearings are conservatively selected in accordance with bearing manufacturers' recommendations to provide maximum load carrying capacity and reliability.
- 8 Dual-lip seals are used exclusively by Nuttall Gear to retain oil effectively and to protect against entry of contaminants. This assures trouble-free long life.
- Helical gears, pioneered by Nuttall Gear, permit more than one gear tooth face to carry the load, and allow gradual progressive transmission of the load from tooth to tooth.
- Large oil reservoir and splash system provide positive lubrication of all gears and bearings.

Effective: 1, August 1984

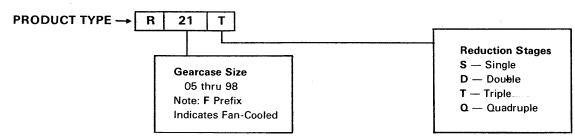
Supersedes: New

Section 250 Page 3

SELECTION AND ORDERING

1. REQUIRED APPLICATION INFORMATION

A. Type of prime mover (motor, engine, diesel).


- Actual Horsepower or output torque (in inch-pounds) required for application.
- C. Determine AGMA Service Factor. (Section 257, pages 4-5
- D. Determine Equivalent Horsepower or Torque by multiplying actual horsepower or torque by service factor.
- E. Determine input speed, and desired output speed or gear ratio.
- F. Determine thrust and overhung load requirements (if any).
- G. Determine mounting position.

2. SELECTION PROCEDURE

- A. Use rating and pricing Section 250, pages 4 thru 19. Find desired input speed in rating charts. Use either desired output speed or nominal gear ratio column. Read across page to either torque or horsepower rating which exceeds the equivalent horsepower or torque that is required. The top of the column shows the size and type of reducer to use, the line below the case designation indicates the list price of that unit.
- B. Certain output speeds designated with an asterisk (e.g., 420*) indicate transition ratios which are an overlap of gear ratios available in both
- single and double, double and triple, and triple and quadruple reduction units. In most cases the single reduction unit will be more expensive than a comparably rated double reduction unit. Size, weight, and rotational orientation may be significant selection factors in some applications, while cost and additional capacity will be significant in others.
- C. Ratings listed in shaded boxes indicate that there is a thermal limitation that is lower than the mechanical capacity listed. Check thermal capacity values against actual horsepower required (thermal capacity is not service factored). If a higher thermal rating is required:
 - 1. Use a fan cooled unit designated with an F prefex (if available);
 - 2. Use a larger standard unit with adequate thermal capacity; or
 - Contact the Nuttall office for price and availability of externally cooled units.
- D. Check overhung load and thrust load requirements (if any) against the ratings for the units listed in Section 257, pages 2, 3.
- E. Add modifications required from Section 255.

3. FRAME DESIGNATIONS

EXAMPLE: R21T

4. SELECTION AND PRICING EXAMPLES

Example A - Horsepower Method

Select a Moduline Reducer to drive a reciprocating single cylinder compressor 10 hours per day, requiring 27 actual horsepower. Compressor is to operate at 420 rpm. The prime mover is a 30HP electric motor at 1750 RPM

Solution A - Horsepower Method

- Actual HP required 27
- 2. AGMA Service Factor 1.75 (Sect. 257, pg. 4,5)
- 3. Equivalent HP: 27 x 1.75 = 47.25HP
- 4. Input 1750, output 420
- See Section 250, page 5. The 76S has a 48.8 HP capacity which is adequate; however, because 420 RPM is a transition speed a 51D has more capacity with a lower cost. Selection can be either a 76S or a 51D depending upon whether weight and size, or cost is the key factor.
- depending upon whether weight and size, or cost is the key factor.

 6. Check allowable overhung load and thrust ratings against application requirements (if any), Section 257, pages 2 and 3.

Example B - Torque Method

Select a Moduline reducer to drive a uniformly loaded chain conveyor 18 hours per day, at 37 RPM, and requiring 20,000 inch pounds of torque. The prime mover is an adjustable speed DC motor with a 1750 RPM base speed

Solution B - Torque Method

- 1. 1750 base speed electric motor
- 2. Required torque 20,000 inch pounds.
- 3 AGMA service factor 1.25.
- 4. Equivalent torque 20,000 x 1.25 = 25,000 inch pounds.
- 5. See Section 250, page 5, 37 RPM line:
- selection is at 54T rated at 27,100 inch pounds.
- Check allowable overhung load and thrust ratings against application requirements.

5. ORDERING

The following information must be provided for each order to permit the manufacturer and assembly of the correct reducer.

1 - 450 - 50

- A. Quantity
- B. Prime mover, type, HP, speed
- C. Reducer size/type designation (R21T)
- D. Output RPM
- E. AGMA service class
- F. Mounting position
- G. Description of modifications
- H. Overhung load and thrust requirements
- . Pricing:
 - 1. List price of unit.
 - 2. Adders for modifications
- 3. Multiplier
- J. Shipment required

Effective: 1, August 1984

Section 250 Page 4

1750 INPUT

RATINGS/PRICING

In-Line Speed Reducers Type R

 $Moduline^{\mathbb{R}}$

Output	Nominal	SIZE/TYPE	108	215	05D	328	10D	15T	435	21D	21T	548	32D
Speed	Gear Ratio	LIST PRICE	1135	1180	810	1420	1165	1485	1605	1530	1745	2110	1935
1430	1.225	MECH. HP TORQUE (1000 " #)	12.8 .59	20.3 .90		30.0 1.34			53.3 2.44			82.1 3.75	
1170	1.500	MECH. HP TORQUE (1000 " #)	10.6 .59	15.8 .90		23.5 1.34		-	44.1 2.44			69.0 3.76	
950	1.837	MECH. HP TORQUE (1000 " #)	8.77 .59	13.5 .90		20.0 1.34			36.2 2.44			55.9 3.76	
780	2.250	MECH. HP TORQUE (1000 " #)	7.11 .59	11.0 .90		16.0 1.34			29.4 2.44			46.3 3.76	
640	2.756	MECH. HP TORQUE (1000 " #)	5.66 .59	8.92 .90		13.2 1.34			24.2 2.44			37.3 3.76	
520	3.375	MECH. HP TORQUE (1000 " #)	4.62 .59	7.02 .90		10.5 1.34			19.1 2.44			29.4 3.76	
420*	4.134	MECH. HP TORQUE (1000 " #)	3.91 .59	5.91 .90	7.10 1.0	8.62 1.34	12-5 1.8		16.1 2.44	18.8 2.8		25.0 3.76	34.3 5.1
350	5.06	MECH. HP TORQUE (1000 " #)			6.4 1.0		11.8 2.2			18.9 3.3			35.0 6.5
280	6.20	MECH. HP TORQUE (1000 " #)			6.2 1.5		11.1 2.5			18.2 4.2			36.0 8.3
230	7.59	MECH. HP TORQUE (1000 " #)			6.1 1.6		10.5 3.3			18.9 5.1			31.0 8.4
190	9.30	MECH. HP TORQUE (1000 " #)			5.1 1.6		10.1 3.4			17.0 5.6			25.4 8.6
155	11.39	MECH. HP TORQUE (1000 " #)			3.8 1.6		8.0 3.4			13.9 5.7			21.4 8.8
125	13.95	MECH. HP TORQUE (1000 " #)			3.0 1.6		6.39 3.3			11.1 5.8			17.2 8.9
100	17.09	MECH. HP TORQUE (1000 " #)			2.5 1.6		5.4 3.3			9.25 5.7			13.9 8.8
84	20.93	MECH. HP TORQUE (1000 " #)			2.1 1.5		4.2 3.1			7.11 5.3			11.0 8.3
68	25.63	MECH. HP TORQUE (1000 " #)			1.4 1.2		2.6 2.4			5.3 4.9			8.4 7.6
56*	31.39	MECH. HP TORQUE (1000 " #)			1.2 1.2	,	2.3 2.5	3.3 3.56		4.21 4.5	5.32 6.1		6.1 6.9
45*	38.44	MECH. HP TORQUE (1000 " #)						2.8 3.67		3.4 4.6	4.55 6.3		5.3 7.1
37	47.08	MECH. HP TORQUE (1000 " #)						2.2 3.73			3.79 6.4		
30	57.60	MECH. HP TORQUE (1000 " #)						1.8 3.80			3.13 6.5		
25	70.62	MECH. HP TORQUE (1000 " #)						1.5 3.8			2.51 6.5		
20	86.50	MECH. HP TORQUE (1000 " #)						1.2 3.8			2.13 6.5		
16.5	105.9	MECH. HP TORQUE (1000 " #)						1.0 3.9			1.77 6.7		
13.5	129.7	MECH. HP TORQUE (1000 " #)						.82 4.0			1.5 6.8		
11.0	158.9	MECH. HP TORQUE (1000 " #)						.67 3.0			.9 5.1		
9.0	194.6	MECH. HP TORQUE (1000 " #)						.55 3.0			.76 5.1		
7.5	238.4	MECH. HP TORQUE (1000 " #)											
6.0	291.9	MECH. HP TORQUE (1000 " #)											
5.0	357.5	MECH. HP TORQUE (1000 " #)											
4.0	437.9	MECH. HP TORQUE (1000 " #)											
3.2	536.3	MECH. HP TORQUE (1000 " #)											
2.7	656.8	MECH. HP TORQUE (1000 " #)											
2.2	804.5	MECH. HP TORQUE (1000 " #)											
1.8	985.3	MECH. HP TORQUE (1000 " #)				DISC	OUNT	N-3					

Effective: 1, August, 1984

Supersedes: New

Moduline®

RATINGS/PRICING 1750 INPUT

32T	320	43D	43T	43Q	76S	51D	51T	54D	54T	54Q	SIZE/TYPE	Nominal Gear	Output
2155	2710	2320	2735	3210	3335	2735	3045	3175	3665	3965	LIST PRICE	Ratio	Speed
					162 745						MECH. HP TORQUE (1000 " #)	1.225	1430
	-				134 7.45	Shade	d hoves i	ndicate a t	hermal		MECH. HP TORQUE (1000 " #)	1.500	1170
					110 7.45	limitat	ion. Plea	se see T	hermal		MECH. HP TORQUE (1000 " #)	1.837	950
					89.8 7.45	Rating	s, Sectio	n 257 Pa	ge 6.		MECH. HP TORQUE (1000 " #)	2.250	780
					74.0 7.45						MECH. HP TORQUE (1000 " #)	2.756	640
					58.4 7.45						MECH: HP TORQUE (1000 " #)	3.375	520
		41.0 6.1			48.8 7.45	60.0 8.9		80 6 12 0			MECH. HP TORQUE (1000 " #)	4.134	420*
		40.3 7.3				61.0 11.3		82.4 15.3			MECH. HP TORQUE (1000 " #)	5.06	350
		40.1 9.0				60.0 13.0		79.7 17.6			MECH. HP TORQUE (1000 " #)	6.20	280
		40.3 11.0				57.5 15.7		77.7 21.2			MECH. HP TORQUE (1000 " #)	7.59	230
		40.2 13.3				48.0 16.1		64.8 21.8			MECH. HP TORQUE (1000 " #)	9.30	190
		33.1 13.5				40.3 16.4		54.4 22.2			MECH. HP TORQUE (1000 " #)	11.39	155
		26.5 13.7				32.5 16.4		43.9 22.2			MECH. HP TORQUE (1000 " #)	13.95	125
		22.9 14.0				27.9 17.0		37.6 23.0			MECH. HP TORQUE (1000 " #)	17.09	100
		19.2 14.2				23.5 17.3		31.7 23.4			MECH. HP TORQUE (1000 " #)	 -	84
		15.0 13.6				20.1 17.6		26.0 23.8			MECH. HP TORQUE (1000 " #		68
8.18 9.4		9.6 10.6	12.6 14.7		ļ	15.6 16.5		17.0 18.8	23.0 26.5	ļ	MECH. HP TORQUE (1000 " #)		56*
7.1 9.8		7.8 10.7	11.6 14.9			12.4 17.1		13.8 19.0	18.6 26.9	<u> </u>	MECH. HP TORQUE (1000 " #)		45*
5.8 9.8			8.9 15.2				11.4 19.4		16.0 27.1	ļ	MECH. HP TORQUE (1000 " #)	47.08	37
4.8 10.0			7.6 15.5				9.4 19.6	ļ	13.2 27.4		MECH. HP TORQUE (1000 " #)		30
3.8 10.0			6.1 15.7				7.7 19.8		10.8 27.7	ļ	MECH. HP TORQUE (1000 " #)	70.62	25
3.1 10.0	<u> </u>		5.05 15.7	ļ			6.1 20.0		8.6 28.0		MECH. HP TORQUE (1000 " #)		20
2.7 10.4			4.2 16.2				5.2 20.1		7.6 28.2		MECH. HP TORQUE (1000 " #)		16.5
2.3 10.6			3.6 16.5				20.3		6.1 28.4		MECH. HP TORQUE (1000 " #)		13.5
2.0 11.1			2.2 12.7	0.5			3.6 20.4		5.1 28.6	1	MECH. HP TORQUE (1000 " #		11.0
1.1 7.6	1.6	ļ	1.8 12.7	18.2			2.8 19.6	 	3.2 22.4	4.0 28.7	MECH HP TORQUE (1000 " #		9.0
	1.3 11.1			2.1 18.3			2.3 19.2		2.7 22.5	3.3 28.9	MECH. HP TORQUE (1000 " #		7.5
	1.1 11.2			1.7 18.4						2.6 29.0	TORQUE (1000 " #		6.0
	.9 11.2	ļ		1.4 18.4	ļ	<u> </u>			<u> </u>	2.2 29.2	MECH. HP TORQUE (1000 " #		5.0
	11.3	<u> </u>		1.1 18.5			<u> </u>		 	1.8 29.3	MECH. HP TORQUE (1000 " #		4.0
	.6 11.3			18.6			<u> </u>	-	 	1.5 29.4	MECH HP TORQUE (1000 " #		3.2
	11.3			18.6 .7	<u> </u>		<u> </u>	-	<u> </u>	1.0 24.3	MECH HP TORQUE (1000 " #		2.7
	11.3		ļ	18.7	<u> </u>			<u> </u>	 	24.3	TORQUE (1000 " #		2.2
	.3 11.4	1		19.7		DIS	COUN	I N-3	<u> </u>		MECH. HP TORQUE (1000 " #	985.3	1.8

Effective: 1, August, 1984

1750 INPUT

RATINGS/PRICING

In-Line Speed Reducers Type R

 $Moduline^{\mathbb{R}}$

Output	Nominal	SIZE/TYPE	64D	64T	64Q	76D	F76D	76T	76Q.	85D	F85D	85T	88D	F88D
Speed	Gear Ratio	LIST PRICE	3605	4685	5080	4835	5195	6090	6820	6405	6845	7805	7400	7840
1430	1.225	MECH. HP TORQUE (1000 " #)												
1170	1.500	MECH. HP TORQUE (1000 " #)					Shade	d boxes in	ndicate a	thermal				
950	1.837	MECH. HP TORQUE (1000 " #)			_	٠.	limitat	ion. Plea	se see 1	hermal				
780	2.250	MECH. HP TORQUE (1000 " #)					Rating	s, Sectio	n 257 Pa	ge 6.				
640	2.756	MECH. HP TORQUE (1000 " #)												
520	3.375	MECH. HP TORQUE (1000 " #)												
420	4.134	MECH. HP TORQUE (1000 " #)				303 45.0	170 45.0						329 48.6	240 48.6
350	5.06	MECH. HP TORQUE (1000 " #)	161.0 29.2			250 46.5	170 46.5						323 58.5	240 58.5
280	6.20	MECH. HP TORQUE (1000 " #)	133 30 1			212 47.5	174 47.5			263 58.4	250 58.4		329 738	250 73.0
230	7.59	MECH. HP TORQUE (1000 " #)	112 30.9			181 49.4	181 49.4			238 65.2	238 65.2		300 81.5	253 81.5
190	9.30	MECH. HP TORQUE (1000 " #)	94.4 31.7			148 50.0	148 50.0			196 65.6	196 65.6		250 82.0	250 82.0
155	11.39	MECH. HP TORQUE (1000 " #)	77.9 32.5			125 51.0	125 51.0			161 66 0	161 66.0		201 82.5	201 82.5
125	13.95	MECH. HP TORQUE (1000 " #)	65.3 33.1			100 52.0				132 66.4			165 83.0	165 83
100	17.09	MECH. HP TORQUE (1000 " #)	53.7 33.8			85.7 53.0				111 68.0			138 85.0	
84	20.93	MECH. HP TORQUE (1000 " #)	45.0 34.4			67.8 50.0				92.1 69.3			115 86.7	
68	25.63	MECH. HP TORQUE (1000 " #)	38.4			50.0 45.6				75.0 68.0			91.3 85.0	
56	31.39	MECH. HP TORQUE (1000 " #)		33.3 38.5				48.0 55.3		61.0 65.7			71.0 81.0	
45	38.44	MECH. HP TORQUE (1000 " #)		27.3 39.1				41.2 57.3		52.0 - 68.3			60.0 82.0	
37	47.08	MECH. HP TORQUE (1000 " #)		23.4 39.5				34.6 58,7				45.5 79.2		
30	57.66	MECH. HP TORQUE (1000 " #)		19.0 40.0				28.7 60.0				38.5 80.8		
25	70.62	MECH. HP TORQUE (1000-" #)		15.8 40.4				24.0 60.7				31.9 81.6		
20	86.50	MECH. HP TORQUE (1000 " #)		12.7 40.9				20.0 61.1				26.2 82.4		
16.5	105.9	MECH. HP TORQUE (1000 " #)		10.6 41.2				16.2 61.5				21.8 83.2		
13.5	129.7	MECH. HP TORQUE (1000 " #)		8.8 41.5				14.1 63.0				17.3 84.0		
11.0	158.9	MECH. HP TORQUE (1000 " #)		7.4 41.8				11.4 65.0				15.1 84.0		
9.0	194.6	MECH. HP TORQUE (1000 " #)			6.1 41.6				9.5 68.6			12.1 80.7		
7.5	238.4	MECH. HP TORQUE (1000 " #)			4.8 42.3				8.1 68.9			10.2 83.2		
6.0	291.9	MECH. HP TORQUE (1000 " #)			4.0 42.6				6.5 69.3					
5.0	357.5	MECH. HP TORQUE (1000 " #)			3.2 42.8				5.4 69.6					
4.0	437.9	MECH. HP TORQUE (1000 " #)			2.6 43.0				4.3 70.0					
3.2	536.3	MECH. HP TORQUE (1000 " #)			2.2 43.1				3.6 70.3					
2.7	656.8	MECH. HP TORQUE (1000 " #)			1.8 43.3				3.0 70.5					
2.2	804.5	MECH. HP TORQUE (1000 " #)							2.5 70.8					
1.8	985.3	MECH. HP TORQUE (1000 " #)				DIS	COUN	T N-3			,			

Effective: 1, June 1986

Supersedes: 15, March 1985

Moduline®

RATINGS/PRICING 1750 INPUT

al Outpu	Nominal	SIZE/TYPE	980	98T	F98D	98D	92Q	92T	F92D	92D	880	88T
Speed	Gear Ratio	LIST PRICE	16615	14435	12850	12275	12810	10785	9980	9540	11110	9035
1430	1.225	MECH. HP TORQUE (1000 " #)										
1170	1.500	MECH. HP TORQUE (1000 " #)				hermal	ndicate a t	d boxes ir	Shade			
950	1.837	MECH. HP TORQUE (1000 " #)					se see T					
780	2.250	MECH. HP TORQUE (1000 " #)				ge 6.	n 257 Pa	s, Sectio	Rating			
640	2.756	MECH. HP TORQUE (1000 " #)										
520	3.375	MECH. HP TORQUE (1000 " #)										
420	4.134	MECH. HP TORQUE (1000 " #)						-				
350	5.06	MECH. HP TORQUE (1000 " #)										
280	6.20	MECH. HP TORQUE (1000 " #)			300 158	717 158			282 82	364 82		
230	7.59	MECH. HP TORQUE (1000 " #)			300 164	604 164			284 98	355 98		
190	9.30	MECH. HP TORQUE (1000 " #)			300 167	504 167			286 102	300 102		•
155	11.39	MECH. HP TORQUE (1000 " #)			300 174	429 174			254 106	254 106		
125	13.95	MECH. HP TORQUE (1000 " #)			300 177	357 197			210 108	210 108		
100	17.09	MECH. HP TORQUE (1000 " #)			300 182	300 182			179 112	179 112		
84	20.93	MECH. HP TORQUE (1000 " #)			248 186	248 186				150 114		
68	25.63	MECH. HP TORQUE (1000 " #)			200 182	200 182				125 117		
56	31.39	MECH. HP TORQUE (1000 " #)				159 173				103 120		82.9 96.0
45	38.44	MECH. HP TORQUE (1000 " #)		150 208						89.1 124		70.5 98.0
3 37	47.08	MECH. HP TORQUE (1000 " #)		125 212				73.5 130	- 1			57.0 99.0
6 30	57.66	MECH. HP TORQUE (1000 " #)		106 214				62.8 132				48.1 101.0
2 25	70.62	MECH. HP TORQUE (1000 " #)		86 216				51.5 134				40.1 102
20	86.50	MECH. HP TORQUE (1000 " #)		68 214				42.3 135				32.7 103
16.	105.9	MECH. HP TORQUE (1000 " #)		58 220				35.8 136				27.2 104
7 13.	129.7	MECH. HP TORQUE (1000 " #)		50 225				28.2 137				21.7 105
11.0	158.9	MECH. HP TORQUE (1000 " #)		40 225				23.8 139			20.7 122	18.3 105
9.0	194.6	MECH. HP TORQUE (1000 " #)	32 224					20 141			16.9 123	14.2 98
7.5	238.4	MECH. HP TORQUE (1000 " #)	27 226					16.4 143			14.5 124	11.4 98
6.0	291.9	MECH. HP TORQUE (1000 " #)	22 231				13 136				11.6 124	
5 5.0	357.5	MECH. HP TORQUE (1000 " #)	18 226				11 138				9.7 125	
4.0		MECH. HP TORQUE (1000 " #)	14 220				9 141				7.7 126	
3 3.2	536.3	MECH. HP TORQUE (1000 " #)	12 232				7 138				6.3 126	
B 2.7	656.8	MECH. HP TORQUE (1000 " #)	10 233				6 140	·			5.3 127	
5 2.2	804.5	MECH. HP TORQUE (1000 " #)									4.5 127	
3 1.8	985.3	MECH. HP TORQUE (1000 " #)				Г N-3	COUN	DISC			2.9 103	

Effective: 1, August 1984

Section 250 Page 8 RATINGS/PRICING

In-Line Speed Reducers

R

	ne	lulii	Noc					R	pe	Ty				CING		1430 IN	
Output Nominal SIZE/TYPE 10S 21S 05D 32S 10D 15T 43S 21D 21T 54S 32D		32D	54S	21T	21D	43S	15T	10D	32S	05D	218	108	SIZE/TYPE	1 . 1	Output		

Output	Nominal	SIZE/TYPE	108	218	05D	328	10D	15T	438	21D	21T	548	32D
Speed	Gear Ratio	LIST PRICE	1135	1180	810	1420	1165	1485	1605	1530	1745	2110	1935
1170	1.225	MECH. HP TORQUE (1000 " #)	10.5 .59	16.2 .9		23.8 1.34			43.5 2.44			67.1 3.76	
950	1.500	MECH. HP TORQUE (1000 " #)	8.72 .59	12.9 .9		19.2 1.34			36.0 2.44			56.4 3.8	
780	1.837	MECH. HP TORQUE (1000 " #)	7.16 .59	11.0 .9		16.4 1.34			30.0 2.44			45.6 3.8	
640	2.250	MECH. HP TORQUE (1000 " #)	5.81 .59	9.0 .9		13.1 1.34			24.0 2.44			37.0 3.8	
520	2.756	MECH. HP TORQUE (1000 " #)	4.62 .59	7.2 .9		10.8 1.34			20.4 2.44			30.5 3.8	
420	3.375	MECH. HP TORQUE (1000 " #)	3.78 .59	5.7 .9		8.59 1.34			15.6 2.44			24.0 3.8	
350*	4.134	MECH. HP TORQUE (1000 " #)	3.19 .59	4.8 .9	5.8 1.0	7.04 1.34	12.1 2.2		13.2 2.44	18.1 3.3		20.3 3.8	35.7 6.5
280	5.06	MECH. HP TORQUE (1000 " #)			5.3 1.2		11.9 2.7			18.7 4.2			36.4 8.3
230	6.20	MECH. HP TORQUE (1000 " #)			5.1 1.3		12.0 3.3			18.1 5.1			30.2 8.4
190	7.59	MECH. HP TORQUE (1000 " #)			5.0 1.6		10.2 3.4			16.9 5.6			25.9 8.6
155	9.30	MECH. HP TORQUE (1000 " #)			4.2 1.6		8.28 3.4			14.1 5.7			21.2 8.8
125	11.39	MECH. HP TORQUE (1000 " #)			3.1 1.6		6.79 3.5			11.6 5.8			17.7 8.9
100	13.95	MECH. HP TORQUE (1000 " #)			2.5 1.6		5.54 3.5			9.1 5.7			13.9 8.8
84	17.09	MECH. HP TORQUE (1000 " #)			2.1 1.5		4.41 3.3			7.1 5.3			10.7 8.3
68	20.93	MECH. HP TORQUE (1000 " #)			1.7 1.5		3.44 3.1			5.4 4.9	·		8.24 7.6
56	25.63	MECH. HP TORQUE (1000 " #)			1.2 1.2		2.14 2.4			4.2 4.7	L		7.1 7.8
45*	31.39	MECH. HP TORQUE (1000 " #)			1.0 1.2		1.9 2.5	2.7 3.6		3.3 4.4	4.5 6.3		5.1 7.0
37	38.44	MECH. HP TORQUE (1000 " #)						2.2 3.7		2.84 4.7	3.8 6.4		4.4 7.2
30	47.08	MECH. HP TORQUE (1000 " #)						1.8 3.7	<u></u>		3.2 6.5		
25	57.66	MECH. HP TORQUE (1000 " #)						1.5 3.8			2.6 6.5		
20	70.62	MECH. HP TORQUE (1000 " #)						1.2 3.8			2.03 6.5		
16.5	86.50	MECH. HP TORQUE (1000 " #)						1.0 3.8			1.7 6.7		
13.5	105.9	MECH. HP TORQUE (1000 " #)					<u> </u>	.81 3.9			1.5 6.8		
11.0	129.7	MECH. HP TORQUE (1000 " #)						.67 4.0			1.3 7.2		
9.0	158.9	MECH. HP TORQUE (1000 " #)						.55 3.2			.75 5.1		
7.5	194.6	MECH. HP TORQUE (1000 " #)						.45 3.2			.62 5.2		
6.0	238.4	MECH. HP TORQUE (1000 " #)											
5.0	291.9	MECH. HP TORQUE (1000 " #)					<u> </u>			<u> </u>			
4.0	357.5	MECH. HP TORQUE (1000 " #)							<u> </u>				
3.2	437.9	MECH. HP TORQUE (1000 " #)									<u> </u>		
2.7	536.3	MECH. HP TORQUE (1000 " #)	<u> </u>							<u> </u>			
2.2	656.8	MECH. HP TORQUE (1000 " #)										ļ	
1.8	804.5	MECH. HP TORQUE (1000 " #)					<u> </u>	ļ		<u> </u>			
1.5	985.3	MECH. HP TORQUE (1000 " #)				DIS	ÇOUN	T N-3					

Effective: 1, August 1984

Supersedes: New

In-Line Speed Reducers Moduline® Type R

RATINGS/PRICING 1430 INPUT

32T	32Q	43D	43T	43Q	76S	51D	51T	54D	54T	540	SIZE/TYPE	Nominal	
2155	2710	2320	2735	3210	3335	2735	3045	3175	3665	3965	LIST PRICE	Gear Ratio	Output Speed
					133 7.5						MECH. HP TORQUE (1000 " #)	1.225	1170
					110 7.5	Shada	d hoves in	ndicate a t	hormal		MECH. HP TORQUE (1000 " #)	1.500	950
					90.5 7.5			se see T			MECH. HP TORQUE (1000." #)	1.837	780
					73.4 7.5	Rating	s, Sectio	n 257 Pa	ge 6.		MECH. HP TORQUE (1000 " #)	2.250	640
					60.5 7.5						MECH. HP TORQUE (1000 " #)	2.756	520
					47.7 7.5						MECH. HP TORQUE (1000 " #)	3.375	420
		40.1 7.3			40.4 7.5	59.7 8.9		79.6 15.3			MECH. HP TORQUE (1000 " #)	4.134	350*
		39.6 9.0				58.2 11.3		77.5 17.6			MECH. HP TORQUE (1000 " #)	5.06	280
		40.1 11.0				58.9 13.0		78.5 21.2			MECH. HP TORQUE (1000 " #)	6.20	230
		39.8 13.3				50.2 15.7		65.3 21.8			MECH. HP TORQUE (1000 " #)	7.59	190
		32.8 13.5				41.1 16.1		53.9 22.2			MECH. HP TORQUE (1000 " #)	9.30	155
		27.4 13.7				32.3 16.4		45.4 22.7			MECH HP TORQUE (1000 " #)	11.39	125
		22.1 14.0				26.5 16.4		36.3 23.0			MECH. HP TORQUE (1000 " #)	13.95	100
		18.9 14.2				21.2 17.0		31.2 23.4			MECH. HP TORQUE (1000 " #)	17.09	84
		15.0 13.6				17.8 17.3		26.3 23.8			MECH. HP TORQUE (1000 " #)	20.93	68
		12.0 13.5				16.2 17.6		21.6 24.2			MECH. HP TORQUE (1000 " #)	25.63	56
7.0 9.8		7.9 10.7	10.4 14.9			13.5 16.5		16.0 19.0	19.1 26.9		MECH. HP TORQUE (1000 " #)	31.39	45 *
5.8 9.8		6.5 10.8	8.9 15.2			10.8 17.1		11.7 19.2	15.3 27.1		MECH. HP TORQUE (1000 " #)	38.44	37*
4.8 10.0			7.5 15.5				10.3 19.4		13.2 27.4		MECH. HP TORQUE (1000 " #)	47.08	30
3.9 10.0			6.1 15.7				8.5 19.6		10.9 27.7	<u> </u>	MECH. HP TORQUE (1000 " #)	57.66	25
3.1 10.0			4.9 15.9				7.1 19.8		8.9 28.0		MECH. HP TORQUE (1000 " #)	70.62	20
2.7 10.4			4.1 16.2				5.9 20.0		7.1 28.2		MECH. HP TORQUE (1000 " #)	86.50	16.5
2.3 10.6			3.5 16.5				4.9 20.1		6.0 28.4	ļ	MECH. HP TORQUE (1000 " #)	105.9	13.5
1.9 10.9			3.0 16.8		ļ		4.1 20.3	<u> </u>	5.1 28.6	<u> </u>	MECH. HP TORQUE (1000 " #)	129.7	11.0
1.1 7.6			1.8 12.7		<u></u>		3.4 20.4		4.1 28.7	<u> </u>	MECH. HP TORQUE (1000 " #)	158.9	9.0
.9 7.7	1.3 11.1		1.5 12.8	2.1 18.3			2.6 19.6		2.7 22.5	3.3 28.9	MECH. HP TORQUE (1000 " #)	194.6	7.5
	1.3 11.2			1.7 18.4			2.0 19.2		2.2 22.6	2.7 29.0	MECH. HP TORQUE (1000 " #)	238.4	6.0
	11.1			1.4 18.4	<u> </u>					2.2 29.2	MECH. HP TORQUE (1000 " #)	291.9	5.0
	.7 11.3			1.2 18.5						1.8 29.3	MECH. HP TORQUE (1000 " #)		4.0
	11.3			18.6						1.5 29.4	MECH. HP TORQUE (1000 " #)	437.9	3.2
	11.3	<u> </u>		18.6				<u> </u>		1.2 29.4	MECH. HP TORQUE (1000 " #)	536.3	2.7
	11.3	ļ		18.7				<u> </u>		24.3	MECH. HP TORQUE (1000 " #)	656.8	2.2
	11.4			.5 .18.7		ļ				24.3	MECH. HP TORQUE (1000 " #)	804.5	1.8
	.27 11.4			1 <u>8</u> .7	`	DISC	OUNT	N-3		· .	MECH. HP TORQUE (1000 " #)	985.3	1.5

Effective: 1, August 1984

Section 250 Page 10

In-Line Speed Reducers Type R

 $\mathsf{Moduline}^{\mathbb{R}}$

RATING 1430 IN	 CING

Output	Nominal	SIZE/TYPE	64D	64T	640	76D	F76D	76T	76Q	85D	F85D	85T	88D	F88D
Speed	Gear Ratio	LIST PRICE	3605	4685	5080	4835	5195	6090	6820	6405	6845	7805	7400	7840
1170	1.225	MECH. HP TORQUE (1000 " #)												
950	1.500	MECH. HP TORQUE (1000 " #)					Shade	d boxes ir	ndicate a 1	hermal				
780	1.837	MECH. HP TORQUE (1000 " #)					limitat	ion. Plea	se see T	hermal				
640	2.250	MECH. HP TORQUE (1000 " #)					Rating	s, Sectio	n 257 Pa	ge o.				
520	2.756	MECH. HP TORQUE (1000 " #)												
420	3.375	MECH. HP TORQUE (1000 " #)												
350	4.134	MECH. HP TORQUE (1000 " #)				255 46.5	139 46.5						323 58.5	203 58.5
280	5.06	MECH. HP TORQUE (1000 " #)	136 30 1			209 475	141 47.5			264 58.4	205 58.4		330 73.0	205 73.0
230	6.20	MECH. HP TORQUE (1000 " #)	111 30 9			180 454	145 49.4			240 65: 2	208 65.2		301 815	208 81.5
190	7.59	MECH. HP TORQUE (1000 " #)	94.5 31.7			150 500	145 50.0			200 65.6	200 65.6		250 82.0	211 82.0
155	9.30	MECH. HP TORQUE (1000 " #)	79.0 32.6			125 51.0	125 51.0			161 66.0	161 66.0		202 82.5	202 82.5
125	11.39	MECH. HP TORQUE (1000 " #)	64.8 33.1		<u> </u>	104 52.0	104 52.0			132 66.4	<u> </u>		165 83.0	165 83.0
100	~ 13.95	MECH. HP TORQUE (1000 " #)	54.4 33.8			83.8 53.0				110 68.0			138 85.0	ļ
84	17.09	MECH. HP TORQUE (1000 " #)	44.6 34.4			66.1 50.0				92.0 69.4			115 86.7	
68	20.93	MECH. HP TORQUE (1000 " #)	37.3 34.9			50.5 45.6		<u> </u>		74.2 68.4			92.8 85.5	ļ
56	25.63	MECH. HP TORQUE (1000 " #)	31.3 35.4			41.5 48.0	<u> </u>			60.0 68.4			75.0 85.5	ļ
45 *	31.39	MECH. HP TORQUE (1000 " #)		27.6 39.1				40.6 57.3	ļ	50.8 65.7			60.2 82.0 50.4	
37 *	38.44	MECH. HP TORQUE (1000 " #)		22.5 39.5	ļ		<u> </u>	34.5 58.7	<u> </u>	43.3 68.3	<u> </u>	20.0	82.5	<u> </u>
30	47.08	MECH. HP TORQUE (1000 " #)		20.0 40.0	ļ		ļ	30.0 60.0			ļ	38.0 80.8		
25	57.66	MECH. HP TORQUE (1000 " #)		15.7 40.4	<u> </u>			23.7 60.7	<u> </u>			31.8 81.6	ļ	-
20	70.62	MECH. HP TORQUE (1000 " #)		13.1 40.9	ļ		<u> </u>	20.0 61.1			<u> </u>	26.3 82.4	ļ	
16.5	86.50	MECH. HP TORQUE (1000 " #)		10.4 41.2	<u> </u>			15.6 61.5		<u> </u>	ļ	21.6 83.2		
13.5	105.9	MECH. HP TORQUE (1000 " #)		8.7 41.5	<u> </u>		ļ	13.5 63.0		<u> </u>		18.0 84.0	ļ	<u> </u>
11.0	129.7	MECH. HP TORQUE (1000 " #)		7.3 41.8	<u> </u>	ļ		11.6 65.3	ļ		ļ	14.3 84.8	_	
9.0	158.9	MECH. HP TORQUE (1000 " #)		6.1 42.1				9.6 66.5	1 70		ļ	12.2 85.6		.
7.5	194.6	TORQUE (1000 " #)			4.8 42.3				7.8 68.9	ļ	<u> </u>	 		
6.0	238.4	MECH. HP TORQUE (1000 " #)		<u> </u>	4.0 42.6	1	ļ	 	6.7 69.3	ļ		 	 	_
5.0	291.9	MECH. HP TORQUE (1000 " #)	<u> </u>	 	3.2 42.8	ļ	ļ.	-	5.4 69.6	ļ			-	
4.0	357.5	MECH. HP TORQUE (1000 " #)	<u> </u>	<u> </u>	2.6 43.0		<u> </u>	<u> </u>	4.5 70.0	ļ		-	 	+
3.2	437.9	MECH. HP TORQUE (1000 " #)		<u> </u>	2.1 43.1	 		 	3.5 70.3 2.9				 	
2.7	536.3	MECH. HP TORQUE (1000 " #)		<u> </u>	1.8 43.3	ļ		<u> </u>	70.5	ļ		 	 	+
2.2	656.8	MECH. HP TORQUE (1000 " #)			1.5 43.4		-	<u> </u>	2.5 70.8	 	-	<u> </u>	-	+
1.8	804.5	MECH. HP TORQUE (1000 " #)	+	1		1	<u> </u>	<u> </u>	2.0 71.0	<u> </u>		<u> </u>		+
1.5	985.3	MECH. HP TORQUE (1000 " #)				DIS	COUN	T N-3		<u> </u>				

Effective: 1, June 1986

Supersedes: 15, March 1985

Moduline®

RATINGS/PRICING 1430 INPUT

88T	880	92D	F92D	92T	920	98D	F98D	98T	980	SIZE/TYPE		Outpu
9035	11110	9540	9980	10785	12810	12275	12850	14435	16615	LIST PRICE	Gear Ratio	Speed
										MECH. HP TORQUE (1000 " #)	1.225	1170
			Shade	d boxes ir	ndicate a t	hermal				MECH. HP TORQUE (1000 " #)	1,500	950
				ion. Plea s, Sectio						MECH. HP TORQUE (1000 " #)	1.837	780
			nating	s, sectio	11 237 FB	ge 6.				MECH. HP TORQUE (1000 " #)	2.250	640
										MECH. HP TORQUE (1000 " #)	2.756	520
										MECH. HP TORQUE (1000 " #)	3.375	420
										MECH. HP TORQUE (1000 " #)	4.134	350
										MECH. HP TORQUE (1000 " #)	5.06	280
		355 98.0	240 98.0			600.0 164	280 164			MECH. HP TORQUE (1000 " #)	6.20	230
		302 102	242 102			504.0 167	280 167			MECH. HP TORQUE (1000 " #)	7.59	190
		255 106	243 106			420 174	280 174			MECH. HP TORQUE (1000 " #)	9.30	155
		212 108	212 108			350 177	280 177			MECH. HP TORQUE (1000 " #)	11.39	125
		178 112	178 112			294 182	280 182			MECH. HP TORQUE (1000 " #)	13.95	100
		150 114				247 186	247 186			MECH, HP TORQUE (1000 " #)	17.09	84
		125 117				205 182	205 182			MECH. HP TORQUE (1000 " #)	20.93	68
		103 120				170 173				MECH. HP TORQUE (1000 " #)	25.63	56
		87.3 124				141 164				MECH. HP TORQUE (1000 " #)	31.39	45
		75.0 126.0						125 212		MECH. HP TORQUE (1000 " #)	38.44	37
47.5 101				61.0 132				105 214		MECH. HP TORQUE (1000 " #)	47.08	30
40.1 102				52.0 134			·	87 216		MECH. HP TORQUE (1000 " #)	57.66	25
32.9 103				42.4 135				71.6 214		MECH. HP TORQUE (1000 " #)	70.62	20
27.0 104				35.1 136				59.7 220		MECH. HP TORQUE (1000 " #)	86.50	16.5
22.5 105				28.8 137				49.7 225		MECH. HP TORQUE (1000 " #)	105.9	13.5
17.9 106				23.0 139				41.4 225		MECH. HP TORQUE (1000 " #)	129.7	11.0
15.2 107	17.1 123			19.7 141				34.5 225		MECH. HP TORQUE (1000 " #)	158.9	9.0
11.5 97.7	13.9 124		,	16.6 143					26.7 226	MECH. HP TORQUE (1000 " #)	194.6	7.5
11.1 97.8	11.4 124			13.6 145					22.2 231	MECH. HP TORQUE (1000 " #)	238.4	6.0
	9.6 125				10.8 138				18.5 226	MECH. HP TORQUE (1000 " #)	291.9	5.0
	8.0 126				9.0 141				15.4 220	MECH. HP TORQUE (1000 " #)	357.5	4.0
	6.3 126				7.5 138				12.8 232	MECH. HP TORQUE (1000 " #)	437.9	3.2
	5.21 127				6.3 140				10.7 233	MECH. HP TORQUE (1000 " #)	536.3	2.7
	4.4 127				5.2 138				8.9 223	MECH. HP TORQUE (1000 " #)	656.8	2.2
	3.6 127									MECH. HP TORQUE (1000 " #)	804.5	1.8
	2.4 103			DIS	COUN	T N-3				MECH. HP TORQUE (1000 " #)	985.3	1.5

Effective: 1, August 1984

 $Moduline^{\mathbb{R}}$

RATINGS/PRICE 1170 INPUT	NG

		0177 /71/77				000	405	4	400	045	247	540	220
Output Speed	Nominal Gear	SIZE/TYPE	108	218	05D	328	10D	15T	435	21D	21T	548	32D
Speeu	Ratio	LIST PRICE	1135	1180	810	1420	1165	1485	1605	1530	1745	2110	1935
950	1.225	MECH. HP TORQUE (1000 " #)	8.6 .6	13.3 .9		19.5 1.3			35.6 2.4			54.9 3.8	
780	1.500	MECH. HP TORQUE (1000 " #)	7.1 .6	10.5 .9		15.7 1.3			29.5 2.4			46.1 3.8	
640	1.837	MECH. HP TORQUE (1000 " #)	5.9 .6	9.0 .9		13.4 1.3			24.2 2.4			37.3 3.8	
520	2.250	MECH. HP TORQUE (1000 " #)	4.8 .6	7.4 .9		10.7 1.3			20.1 2.4			30.3 3.8	
420	2.756	MECH. HP TORQUE (1000 " #)	3.8 .6	6.0 .9		8.9 1.3			16.2 2.4			25.0 3.8	
350	3.375	MECH. HP TORQUE (1000 " #)	3.1 .6	4.7 .9		7.0 1.3			12.7 2.4			20.2 3.8	
280*	4.134	MECH. HP TORQUE (1000 " #)	2.6 .6	4.0 .9	4.7 1.5	5.8 1.3	12.1 2.7		10.8 2.4	18.0 4.2		16.6 3.8	37.3 8.3
230	5.06	MECH. HP TORQUE (1000 " #)			3.9 1.6		11.9 3.3			18.6 5.1			30.1 8.4
190	6.20	MECH. HP TORQUE (1000 " #)			3.3 1.6		10.1 3.4			16.2 5.6			24.9 8.6
155	7.59	MECH. HP TORQUE (1000 " #)			2.7 1.6		8.4 3.4			14.1 5.7			21.7 8.8
125	9.30	MECH. HP TORQUE (1000 " #)			2.3 1.6		7.0 3.5			11.7 5.8			17.6 8.9
100	11.39	MECH. HP TORQUE (1000 " #)			1.9 1.6		5.6 3.5			9.3 5.7			14.3 8.8
84	13.95	MECH. HP TORQUE (1000 " #)			1.6 1.5		4.3 3.3			6.8 5.3			10.7 8.3
68	17.09	MECH. HP TORQUE (1000 " #)			1.3 1.2		3.4 3.1			5.3 4.9		<u></u>	8.1 7.6
56	20.93	MECH. HP TORQUE (1000 " #)			1.1 1.2		2.9 3.2			4.5 5.0			7.0 7.9
45	25.63	MECH. HP TORQUE (1000 " #)					1.8 2.5			3.3 4.6			5.2 7.0
37	31.39	MECH. HP TORQUE (1000 " #)					1.5 2.5	2.2 3.6		2.8 4.7	3.7 6.4		4.3 7.2
30	38.44	MECH. HP TORQUE (1000 " #)						1.9 3.8		2.4 4.8	3.1 6.5		3.6 7.3
25	47.08	MECH. HP TORQUE (1000 " #)						1.5 3.8		<u> </u>	2.6 6.5		
20	57.66	MECH. HP TORQUE (1000 " #)						1.2 3.8			2.1 6.5		
16.5	70.62	MECH, HP TORQUE (1000 " #)						1.0 3.8			1.7 6.7		
13.5	86.50	MECH. HP TORQUE (1000 " #)						.8 3.8			1.4 6.8		
11.0	105.9	MECH. HP TORQUE (1000 " #)						.7 3.9			1.3 7.2		
9.0	129.7	MECH. HP TORQUE (1000 " #)						.5 4.0			1.1 7.2		
7.5	158.9	MECH. HP TORQUE (1000 " #)						.4 3.0			.6 5.1		
6.0	194.6	MECH. HP TORQUE (1000 " #)						3.0			5.1		
5.0	238.4	MECH. HP TORQUE (1000 " #)											
4.0	291.9	MECH. HP TORQUE (1000 " #)											
3.2	357.5	MECH. HP TORQUE (1000 " #)											
2.7	437.9	MECH. HP TORQUE (1000 " #)											
2.2	536.3	MECH. HP TORQUE (1000 " #)											
1.8	656.8	MECH. HP TORQUE (1000 " #)											
1.5	804.5	MECH. HP TORQUE (1000 " #)											
1.2	985.3	MECH. HP TORQUE (1000 " #)			DIS	COUN	T N-3						

Effective: 1, August 1984

Moduline®

RATINGS/PRICING 1170 INPUT

43T 43Q **76S 54Q** SIZE/TYPE Nominal 32T 32Q 43D 51D 51T 54D 54T Output 2710 2320 2735 3210 3665 3965 LIST PRICE 2155 3335 2735 3045 3175 Ratio MECH. HP TORQUE (1000 " #) 1.225 950 90.1 7.5 MECH. HP TORQUE (1000 " #) 780 1.500 Shaded boxes indicate a thermal 74.0 7.5 MECH. HP TORQUE (1000 " #) 640 limitation. Please see Thermal 1.837 Ratings, Section 257 Page 6. 60.0 7.5 MECH. HP TORQUE (1000 " #) 520 2.250 49.5 7.5 MECH. HP TORQUE (1000 " # 2.756 420 39.0 7.5 MECH. HP TORQUE (1000 " #) 3.375 350 42.0 8.9 40.4 9.0 79 1 17 6 MECH. HP TORQUE (1000 " #) 280 4.134 MECH. HP TORQUE (1000 ".#) 40.2 11.0 230 5.06 41.0 14.0 66.0 21.8 MECH. HP TORQUE (1000 " #) 6.20 190 38.4 15.7 33.1 13.5 MECH. HP TORQUE (1000 " #) 7.59 155 36.0 16.1 27.2 13.7 46.1 22.7 MECH. HP TORQUE (1000 " #) 125 9.30 22.9 14.0 26.8 16.4 37.7 23.0 MECH. HP TORQUE (1000 " #) 100 11.39 26.8 16.4 30.2 23.4 MECH. HP TORQUE (1000 " #) 18.3 14.2 13.95 84 21.7 16.4 26.0 23.8 MECH. HP TORQUE (1000 " #) 14.8 13.6 17.09 68 12.6 14.0 18.6 17.0 21.8 MECH. HP TORQUE (1000 " #) 56 20.93 13.8 17.3 15.7 19.0 7.8 10.7 MECH. HP TORQUE (1000 " #) 25.63 45 11.6 17.6 13.4 19.2 6.5 10.8 15.7 27.1 MECH. HP TORQUE (1000 " #) 5.7 9.9 8.7 15.2 31.39 37 9.5 16.5 10.4 19.4 MECH. HP TORQUE (1000 " #) 7.4 15.5 4.8 10.0 12.6 27.4 30 38.44 MECH. HP TORQUE (1000 " #) 4.0 10.0 25 47.08 5.0 15.9 7.6 19.4 9.1 28 3.2 10.0 MECH. HP TORQUE (1000 " #) 57.66 20 6.3 19.6 7.4 28.2 4.1 16.2 MECH. HP TORQUE (1000 " #) 2.7 10 4 70.62 16.5 3.4 16.5 5.8 28.4 MECH. HP TORQUE (1000 " #) 2.2 10.6 5.1 19.8 86.50 13.5 4.1 20.0 MECH. HP TORQUE (1000 " #) 1.9 10.9 2.S 16.8 4.9 28.6 105.9 11.0 MECH. HP TORQUE (1000 " #) 1.6 11.2 2.5 17.1 3.5 20.1 4.2 28.7 129.7 9.0 .9 7.7 1.5 12.6 2.9 20.3 3.4 28.8 MECH. HP TORQUE (1000 " #) 7.5 158.9 2.4 20.4 MECH. HP TORQUE (1000 " #) .8 7.7 1.1 11.2 1.2 12.8 1.7 18.4 2.2 22.6 2.7 29.0 194.6 6.0 MECH. HP TORQUE (1000 " #) 1.4 18.4 2.2 29.2 .9 11.2 238.4 5.0 1.5 19.2 1.2 18.5 .7 11.3 MECH. HP TORQUE (1000 " #) 291.9 4.0 .6 11.3 1.0 18.6 1.5 29.4 MECH. HP TORQUE (1000 " #) 357.5 3.2 .8 18.6 1.2 29.4 MECH. HP TORQUE (1000 " # .5 11.3 437.9 2.7 1.0 29.5 MECH. HP TORQUE (1000 " #) .6 18.7 .4 11.3 536.3 2.2 MECH. HP TORQUE (1000 " #) .3 11.4 .7 24.3 1.8 18.7 656.8 .4 18.7 MECH. HP TORQUE (1000 " #) .3 11.4 .6 24.4 1.5 804.5 MECH. HP TORQUE (1000 " #) .2 11.4 .4 18.7 **DISCOUNT N-3** 1.2 985.3

Effective: 1, August 1984

Section 250
Page 14
RATINGS/PRICING

1170 INPUT

In-Line Speed Reducers Type R

Moduline[®]

Output	Nominal	SIZE/TYPE	64D	64T	64Q	76D	F76D	76T	76Q	85D	F85D	85T	88D	F88D
Speed	Gear Ratio	LIST PRICE	3605	4685	5080	4835	5195	6090	6820	6405	6845	7805	7400	7840
950	1.225	MECH, HP TORQUE (1000 " #)												
780	1.500	MECH. HP TORQUE (1000 " #)					Shade	d boxes ir	dicate a t	hermal				
640	1.837	MECH. HP TORQUE (1000 " #)					•	ion. Plea						
520	2.250	MECH. HP TORQUE (1000 " #)			-		Rating	s, Section	n 257 Pa	ge 6.				
420	2.756	MECH. HP TORQUE (1000 " #)												
350	3.375	MECH. HP TORQUE (1000 " #)												
280	4.134	MECH. HP TORQUE (1000 " #)				213 47.5	125 47.5						330 73	180 73
230	5.06	MECH. HP TORQUE (1000 " #)	114 30 9			178 49.4	127 49.4			240 65.2	182 65.2		301 81.5	182 81.5
190	6.20	MECH. HP TORQUE (1000 " #)	94 31.7			150 50	1 <u>29</u> 50			200 65 6	184 65.6		250 82.0	184 82.0
155	7.59	MECH. HP TORQUE (1000 " #)	79.2 32.5			쯹	125 51			161 68	161 68		202 82.5	188 82.5
125	9.30	MECH. HP TORQUE (1000 " #)	65.9 33.1			103 52				132 66.4			166 83	
100	11.39	MECH. HP TORQUE (1000 " #)	54.2 33.8			87.0 53				111 68			139 85	
84	13.95	MECH. HP TORQUE (1000 " #)	45.3 34.4			64.7 50				92 69.4			115 86.7	
68	17.09	MECH. HP TORQUE (1000 " #)	37.0 34.9			50.1 45.6				75.4 68.4			93.4 85.5	
56	20.93	MECH. HP TORQUE (1000 " #)	31.0 35.5			43.3 47.8				63.8 71.8			79.7 89.7	
45	25.63	MECH. HP TORQUE (1000 " #)	26.4 35.9			33.5 50.0				50.2 68.8			61.7 86.0	
37*	31.39	MECH. HP TORQUE (1000 " #)		22.8 39.5				34.0 58.7		40.9 65.7			50.1 82.5	ļ
30*	38.44	MECH. HP TORQUE (1000 " #)		18.6 40.0				30.0 60.0		35.1 68.3			40.6 83.0	<u> </u>
25	47.08	MECH. HP TORQUE (1000 " #)		16.0 40.4				23.9 60.7				31.4 81.6		<u> </u>
20	57.66	MECH. HP TORQUE (1000 " #)		13.0 40.9				20.1 61.1				26.2 82.4		<u> </u>
16.5	70.62	MECH. HP TORQUE (1000 " #)		10.8 41.2				16.2 61.5				21.8 83.2		
13.5	86.50	MECH, HP TORQUE (1000 " #)		8.6 41.5				13.1 63.0				17.8 84.0		
11.0	105.9	MECH. HP TORQUE (1000 " #)		7.1 41.8				11.5 65.3				14.8 84.8		
9.0	129.7	MECH. HP TORQUE (1000 " #)		6.0 42.0				9.7 66.5				11.8 85.6		ļ
7.5	158.9	MECH. HP TORQUE (1000 " #)		5.0 42.3				7.7 65.0				10.0 85.6	<u> </u>	<u> </u>
6.0	194.6	MECH. HP TORQUE (1000 " #)			4.0 42.6				6.4 69.3	<u> </u>	<u> </u>			
5.0	238.4	MECH. HP TORQUE (1000 " #)			3.3 42.8				5.5 69.6	<u> </u>	<u> </u>	<u> </u>		<u> </u>
4.0	291.9	MECH, HP TORQUE (1000 " #)			2.7 43.0				70.0			<u> </u>	<u> </u>	<u> </u>
3.2	357.5	MECH. HP TORQUE (1000 " #)			2.1 43.1				3.7 70.3			<u> </u>	<u> </u>	<u> </u>
2.7	437.9	MECH. HP TORQUE (1000 " #)	ļ		1.7 43.3			<u> </u>	2.9 70.5			<u> </u>	<u> </u>	
2.2	536.3	MECH. HP TORQUE (1000 " #)			1.5 43.4				2.4 70.8			<u> </u>	<u> </u>	
1.8	656.8	MECH. HP TORQUE (1000 " #)			1.2 43.6			<u> </u>	2.0 71.0		 	ļ	ļ	
1.5	804.5	MECH. HP TORQUE (1000 " #)							1.7 71.2		<u> </u>	ļ		
1.2	985.3	MECH. HP TORQUE (1000." #)				DIS	COUN	T N-3				1		

Effective: 1, June 1986

Supersedes: 15, March 1985

Moduline®

Section 250 Page 15

RATINGS/PRICING 1170 INPUT

88T	880	92D	F92D	92T	92Q	98D	F98D	98T	980	SIZE/TYPE	Nominal	Output
9035	11110	9540	9980	10785	12810	12275	12850	14435	16615	LIST PRICE	Gear Ratio	Speed
										MECH. HP TORQUE (1000 " #)	1.225	950
			Shade	d boxes i	ndicate a 1	thermal				MECH. HP TORQUE (1000 " #)	1.500	780
			limitat	ion. Plea	se see T	hermal				MECH. HP TORQUE (1000 " #)	1.837	640
			Rating	s, Sectio	n 257 Pa	ge 6.				MECH. HP TORQUE (1000 " #)	2.250	520
										MECH. HP TORQUE (1000 " #)	2.756	420
										MECH. HP TORQUE (1000 " #)	3.375	350
										MECH. HP TORQUE (1000 " #)	4.134	280
		-								MECH. HP TORQUE (1000 " #)	5.06	230
		302 102	212 102			480 158	220 158			MECH. HP TORQUE (1000 " #)	6.20	190
		257 106	214 106			405 164	220 164			MECH. HP TORQUE (1000 " #)	7.59	155
		712 108	212 108			338 167	220 167			MECH. HP TORQUE (1000 " #)	9.30	125
		172	179 112			287 174	220 174			MECH. HP TORQUE (1000 " #)	11.39	100
		148 114				239 177				MECH. HP TORQUE (1000 " #)	13.95	84
		125 117				201 182				MECH. HP TORQUE (1000 " #)	17.09	68
		104 120				166 186				MECH. HP TORQUE (1000 " #)	20.93	56
		87.4 124				134 182				MECH. HP TORQUE (1000 " #)	25.63	45
55.6 96		72.6 126				107 173				MECH. HP TORQUE (1000 " #)	31.39	37
47 98		62.5 130		1 1				101 208		MECH. HP TORQUE (1000 " #)	38.44	30
39.3 102				50.7 134				84 212		MECH. HP TORQUE (1000 " #)	47.08	25
32.8 103				42.9 135			·	68 214		MECH. HP TORQUE (1000 " #)	57.66	20
27.2 104				35.0 136			<u> </u>	57.6 216		MECH. HP TORQUE (1000 " #)	70.62	16.5
22.3 105				28.6 137				45.7 214		MECH. HP TORQUE (1000 " #)	86.50	13.5
18.5 106				23.7 138				38.9 220		TORQUE (1000 " #)	105.9	11.0
14.7 107	14.4			19.1 141				33.5 225		TORQUE (1000 " #)		9.0
12.5 107	14.1 124			16.4 143				26.8 225	21.4	MECH. HP TORQUE (1000 " #)	 	7.5
9.5 97.8	11.4 124			13.7 145					21.4 224	MECH. HP TORQUE (1000 " #)	194.6	6.0
7.6 97.8	9.8 125			11.2 146	0.7	ļ			18.1 226	MECH. HP TORQUE (1000 " #)	238.4	5.0
	7.9 126				8.7 136				15.1 231	MECH. HP TORQUE (1000 " #)	291.9	4.0
	6.5 126				7.4 138			 	12.1 226	MECH. HP TORQUE (1000 " #)		3.2
	5.2 127 4.3	-			6.0 141 4.7		 		9.4 220 8.0	MECH. HP TORQUE (1000 " #)		2.7
	4.3 127 3.6				138	ļ	ļ		8.0 232	MECH. HP TORQUE (1000 " #)	536.3	2.2
	3.6 127				140	<u> </u>	 	<u> </u>	6.7 233	MECH. HP TORQUE (1000 " #) MECH. HP	 	1.8
	3.0 127					<u> </u>				MECH. HP TORQUE (1000 " #)	804.5	1.5
	2.0 103			DISC	COUNT	N-3				MECH. HP TORQUE (1000 " #)	985.3	1.2

Effective: 1, August 1984

Section 250 Page 16

870 INPUT

RATINGS/PRICING

In-Line Speed Reducers Type R

Moduline[®]

Output	Nominal	SIZE/TYPE	108	218	05D	32S	10D	15T	438	21D	21T	54S	32D
Speed	Gear Ratio	LIST PRICE	1135	1180	810	1420	1165	1485	1605	1530	1745	2110	1935
700	1.225	MECH. HP TORQUE (1000 " #)	6.4 .6	9.9 .9		14.5 1.3			26.5 2.4			40.8 3.8	·
580	1.500	MECH. HP TORQUE (1000 " #)	5.3 .6	7.9 .9		11.7 1.3			21.9 2.4			34.3 3.8	
470	1.837	MECH. HP TORQUE (1000 " #)	4.4 .6	6.7 .9		10.0 1.3			18.0 2.4			27.8 3.8	
390	2.250	MECH. HP TORQUE (1000 " #)	3.5 .6	5.5 .9		8.0 1.3			15.0 2.4			22.5 3.8	
320	2.756	MECH. HP TORQUE (1000 " #)	2.8 .6	4.4 .9		6.6 1.3			12.0 2.4			18.5 3.8	
260	3.375	MECH. HP TORQUE (1000 " #)	2.3 .6	3.5 .9		5.2 1.3			9.5 2.4			15.0 3.8	
210*	4.134	MECH. HP TORQUE (1000 " #)	1.9	2.9 .9	3.6 1.0	4.3 1.3	10.7 3.2		8.0 2.4	18.7 5.6		12.3 3.8	28.4 8.5
175	5.06	MECH. HP TORQUE (1000 " #)			3.2 1.0		8.9 3.3			15.4 5.7			23.2 8.7
140	6.20	MECH. HP TORQUE (1000 " #)	·		3.1 1.5		7.6 3.4			12.5 5.8			19.2 8.9
115	7.59	MECH. HP TORQUE (1000 " #)			3.1 1.6		6.4 3.5			10.6 5.8			16.5 9.0
95	9.30	MECH. HP TORQUE (1000 " #)			2.6 1.6		5.2 3.5			8.9 5.9			13.3 9.1
77	11.39	MECH. HP TORQUE (1000 " #)			1.9 1.6		4.2 3.6			7.3 6.0			11.1 9.2
62	13.95	MECH. HP TORQUE (1000 " #)			1.5 1.6		3.5 3.6			5.8 6.1			9.0 9.4
50	17.09	MECH. HP TORQUE (1000 " #)			1.3 1.6		2.9 3.5			4.9 6.1			7.5 9.5
42	20.93	MECH. HP TORQUE (1000 " #)			1.1 1.5		2.2 3.3			4.2 6.2			6.3 9.5
34	25.63	MECH. HP TORQUE (1000 " #)			.7 1.2		1.4 2.6			2.6 4.9			5.3 9.6
28	31.39	MECH. HP TORQUE (1000 " #)			.6 1.2		1.2 2.6	1.7 3.6		2.1 4.7	3.0 7.0		3.2 7.2
22	38.44	MECH. HP TORQUE (1000 " #)						1.4 3.7		1.8 4.7	2.5 7.0		2.7 7.3
18	47.08	MECH. HP TORQUE (1000 " #)						1.1 3.7			2.1 7.1		
15	57.66	MECH. HP TORQUE (1000 " #)						3.80			1.7 7.1		
12.5	70.62	MECH. HP TORQUE (1000 " #)						.8 3.8			1.4 7.1		
10	86.50	MECH. HP TORQUE (1000 " #)						.6 3.8			1.1 7.2		
8.3	105.9	MECH. HP TORQUE (1000 " #)						.5 3.9			.95 7.2		
6.8	129.7	MECH. HP TORQUE (1000 " #)						4.0			,8 7.2		
5.5	158.9	MECH. HP TORQUE (1000 " #)						.34 3.0			.5 5.2		
4.5	194.6	MECH. HP TORQUE (1000 " #)						3.0			.4 5.2		
3.8	238.4	MECH. HP TORQUE (1000 " #)											
3.0	291.9	MECH. HP TORQUE (1000 " #)											
2.5	357.5	MECH. HP TORQUE (1000 " #)											
2.0	437.9	MECH. HP TORQUE (1000 " #)											
1.6	536.3	MECH. HP TORQUE (1000 " #)											
1.3	656.8	MECH. HP TORQUE (1000 " #)											
1.1	804.5	MECH. HP TORQUE (1000 " #)											
.9	985.3	MECH. HP TORQUE (1000 " #)				D	scou	NT N-	3				

Effective: 1, August 1984

Supersedes: New

In-Line Speed Reducers Type R

Moduline®

RATINGS/PRICING 870 INPUT

32T	32Q	43D	43T	43Q	768	51D	51T	54D	54T	54Q	SIZE/TYPE	Nominal Gear	Output
2155	2710	2320	2735	3210	3335	2735	3045	3175	3665	3965	LIST PRICE	Ratio	Speed
					80.9 7.5						MECH, HP TORQUE (1000 " #)	1.225	700
					67.0 7.5	Shade	d boxes in	dicate a t	hermal		MECH. HP TORQUE (1000 " #)	1.500	580
					55.0 7.5	limitat	ion. Plea	se see T	hermal		MECH. HP TORQUE (1000 " #)	1.837	470
					44.6 7.5	Rating	s, Section	n 257 Pa	ge 6.		MECH. HP TORQUE (1000 " #)	2.250	390
					36.8 7.5						MECH. HP TORQUE (1000 " #)	2.756	320
					29.0 7.5						MECH. HP TORQUE (1000 " #)	3.375	260
		40.4 12.1	-		24.2 7.5	30.0 8.9		71.8 21.5			MECH. HP TORQUE (1000 " #)	4.134	210
		36.4 13.6				30.5 11.3		60.1 22.0			MECH. HP TORQUE (1000 " #)	5.06	175
		31.7 14.3				30.0 13.0		50.4 22.4			MECH. HP TORQUE (1000 " #)	6.20	140
		26.6 14.6				29.0 15.7		41.5 22.8			MECH. HP TORQUE (1000 " #)	7.59	115
		21.8 14.8		-		24.0 16.1		34.3 23.2			MECH. HP TORQUE (1000 " #)	9.30	95
		18.2 15.0				20.2 16.4		28.7 23.6			MECH. HP TORQUE (1000 " #)	11.39	77
		15.1 15.3				16.3 16.4		23.0 24.0			MECH. HP TORQUE (1000 " #)	13.95	62
		12.5 15.4				15.0 17.0		19.7 24.3			MECH. HP TORQUE (1000 " #)	17.09	50
		10.5 15.6				11.7 17.3		16.5 24.6	<u> </u>		MECH. HP TORQUE (1000 " #)	20.93	42
		8.5 15.7				10.2 17.6		13.5 24.9			MECH. HP TORQUE (1000 " #)	25.63	34
4.3 10.0		5.0 11.0	7.5 17.5			7.9 16.5		8.8 19.5	12.0 27.6		MECH. HP TORQUE (1000 " #)	31.39	28 *
3.7 10.3		4.0 11.1	6.3 17.7			6.5 17.1		7.2 19.7	9.6 27.9		MECH. HP TORQUE (1000 " #)	38.44	22*
3.1 10.5			5.2 17.8				5.7 19.4		8.2 28.0		MECH. HP TORQUE (1000 " #)	47.08	18
2.5 10.5			4.3 18.0				5.1 19.6		6.8 28.3	<u> </u>	MECH. HP TORQUE (1000 " #)	57.66	15
2.0 10.6			3.4 18.1				3.9 19.8		5.5 28.5	ļ	MECH. HP TORQUE (1000 " #)	70.62	12.5
1.7 10.7			2.8 18.2				3.2 20.0		4.4 28.7		MECH. HP TORQUE (1000 " #)	86.50	10
1.5 11.1			2.4 18.3				2.7 20.1		3.7 28.8		MECH. HP TORQUE (1000 " #)	105.9	8.3
1,2 11.2			2.0 18.4				20.3		3.1 29.0	<u> </u>	MECH. HP TORQUE (1000 " #)		6.8
7 7.8			1.1 13.0				1.8 20.4		2.6 29.1		MECH. HP TORQUE (1000 " #)		5.5
.6 7.8	.8 11.2		13.0	1.3 18.4		<u> </u>	1.4 19.6		1.6 22.8	2.0 29.2	MECH. HP TORQUE (1000 " #)		4.5
	11.3			1.1 18.5			1.2 19.2		1.3 22.9	1.7 29.3	MECH. HP TORQUE (1000 " #)		3.8
	11.3	ļ		18.6		<u></u>				1.3 29.4	MECH. HP TORQUE (1000 " #)		3.0
	.5 11.3		<u></u>	18.6		ļ			ļ	1.1 29.4	MECH. HP TORQUE (1000 " #)	+	2.5
	11.3	ļ	<u> </u>	18.7						29.5	MECH. HP TORQUE (1000 " #)		2.0
	11.4	ļ		18.7		ļ	ļ	<u> </u>	<u> </u>	29.7	MECH. HP TORQUE (1000 " #)		1.6
	.25 11.4	<u> </u>		18.7			ļ	ļ	<u> </u>	24.4	MECH. HP TORQUE (1000 " #)		1.3
	11.4			18.7			<u> </u>		ļ	24.5	TORQUE (1000 " #)		1.1
	.16 11.5			.25 18.8	DIS	COUN	T N-3				MECH, HP TORQUE (1000 " #)	985.3	.9

Effective: 1, August 1984

Section 250
Page 18
RATINGS/PRICING

870 INPUT

In-Line Speed Reducers Type R

Moduline[®]

Output	Nominal Gear	SIZE/TYPE	64D	64T	64Q	76D	F76D	76T	76Q	85D	85T	88D	F88D
Speed	Ratio	LIST PRICE	3605	4685	5080	4835	5195	6090	6820	6405	7805	7400	7840
700	1.225	MECH. HP TORQUE (1000 " #)											
580	1.500	MECH. HP TORQUE (1000 " #)					Shade	d hoves in	dicate a t	hermal			
470	1.837	MECH. HP TORQUE (1000 " #)					limitat	ion. Plea	se see T	hermal			
390	2.250	MECH. HP TORQUE (1000 " #)					Rating	s, Section	n 257 Pa	ge 6.			
320	2.756	MECH. HP TORQUE (1000 " #)											
260	3.375	MECH. HP TORQUE (1000 " #)			,								
210	4.134	MECH. HP TORQUE (1000 " #)				150 0 44 6	109 44.6					163 48.6	155 48.4
175	5.06	MECH. HP TORQUE (1000 " #)	87.9 32.0			140 51 0	110 51.0					161 58.5	157 58.5
140	6.20	MECH. HP TORQUE (1000 " #)	72.2 32.8			118 52.7	111 52.7			131 58.4		164 73 0	159 73.0
115	7.59	MECH. HP TORQUE (1000 " #)	60.5 33.4			101 55.2				123 68		154 88	154 85
95	9.30	MECH. HP TORQUE (1000 " #)	50.3 34.0			82.3 55.6				101 68.4		127 85.5	
77	11.39	MECH. HP TORQUE (1000 " #)	41.3 34.7			68.9 56.5				84 69.2		105 86.5	
62	13.95	MECH. HP TORQUE (1000 " #)	34.5 35.2			55.4 57.6				68.8 69.6		86.1 87.0	
50	17.09	MECH. HP TORQUE (1000 " #)	28.2 35.8			46.9 58.3				56.9 70.0		71.1 87.5	
42	20.93	MECH. HP TORQUE (1000 " #)	23.5 36.2			40.1 59.0				46.5 70.4		60.0 88.0	
34	25.63	MECH. HP TORQUE (1000 " #)	20.0 36.6			25.0 59.8				37.8 70.8		47.2 88.5	
28	31.39	MECH. HP TORQUE (1000 ". #)		17.2 40.2			25.4 59.0			31.5 65.7		37.3 85.5	
22	38.44	MECH. HP TORQUE (1000 " #)		14.1 40.7			22.5 63.0			26.0 68.3		31.1 85.5	
18	47.08	MECH. HP TORQUE (1000 " #)		12.1 41.0				18.5 63.0			` 23.8 83.2		
15	57.66	MECH. HP TORQUE (1000 " #)		10.1 41.3				15.0 63.0			20.1 84.0		
12.5	70.62	MECH. HP TORQUE (1000 " #)		8.1 41.6				12.5 64.0			16.5 84.8		
10	86.50	MECH. HP TORQUE (1000 " #)		6.5 42.0				10.0 65.0			13.4 84.8		
8.3	105.9	MECH. HP TORQUE (1000 " #)		5.4 42.2				8.6 66.0			11.1 86.6		
6.8	129.7	MECH. HP TORQUE (1000 " #)		4.5 42.5				7.3 67.0			8.9 86.4		
5.5	158.9	MECH. HP TORQUE (1000 "_#)		3.8 42.7				5.9 67.0			7.5 86.4		
4.5	194.6	MECH. HP TORQUE (1000 " #)			3.0 42.8				4.8 69.6				
3.8	238.4	MECH. HP TORQUE (1000 " #)			2.4 43.0				4.1 70.0				
3.0	291.9	MECH. HP TORQUE (1000 " #)			2.0 43.1				3.3 70.3				<u> </u>
2.5	357.5	MECH. HP TORQUE (1000 " #)			1.6 43.3			<u> </u>	2.7 70.5				
2.0	437.9	MECH. HP TORQUE (1000 " #)			1.3 43.4				2.2 70.8				
1.6	.536.3	MECH. HP TORQUE (1000 " #)			1.1 43.6				1.8 71.0	<u> </u>		<u> </u>	
1.3	656.8	MECH. HP TORQUE (1000 " #)			.9 43.7				1.5 71.2	ļ	<u> </u>	<u> </u>	<u> </u>
1.1	804.5	MECH. HP TORQUE (1000 " #)				<u> </u>			1.3 71.4				
.9	985.3	MECH. HP TORQUE (1000 " #)				DISC	OUNT	N-3					

Effective: 1, June 1986

Supersedes: 15, March 1985

Moduline®

RATINGS/PRICING 870 INPUT

Output Speed	Gear	SIZE/TYPE	98Q 16615	98T	F98D	98D	92Q 12810	92T	F92D 9980	92D 9540	88Q 11110	88T 9035
700	Ratio	MECH. HP TORQUE (1000 " #)	10015	14433	12000	122/5	12010	10703	3300	0040	11110	-
700	1.225	TORQUE (1000 " #) MECH. HP TORQUE (1000 " #)				!						
580	1.500	MECH. HP TORQUE (1000 " #)						d boxes in ion. Plea				
470	1.837							s, Section				
390	2.250	MECH. HP TORQUE (1000 " #). MECH. HP										,
320	2.756	MECH. HP TORQUE (1000 " #), MECH. HP										
260	3.375	MECH. HP TORQUE (1000 " #)			·							
210	4.134	MECH. HP TORQUE (1000 " #)										
175	5.06	MECH. HP TORQUE (1000 " #)			200	250			180	180		
140	6.20	MECH. HP TORQUE (1000 " #)			158	359 158 302			82.0 176	82.0 176		
115	7.59	MECH. HP TORQUE (1000 " #)			200 164	164			98	98		
95	9.30	MECH. HP TORQUE (1000 " #)			200 167	252 167			164 112	112		
77	11.39	MECH. HP TORQUE (1000 " #)			200 174	215 174				136 114		
62	13.95	MECH. HP TORQUE (1000 " #)				179 177				113 117		
50	17.09	MECH. HP TORQUE (1000 " #)				150 182				95.7 120		
42	20.93	MECH. HP TORQUE (1000 " #)				124 186				80.4 124		
34	25.63	MECH. HP TORQUE (1000 " #)				100 182				66.0 126		
28	31.39	MECH. HP TORQUE (1000 " #)				159 173				55.7 130		42.0 96.0
22	38.44	MECH. HP TORQUE (1000 " #)		75 208						47.5 133		35.0 98.0
18	47.08	MECH. HP TORQUE (1000 " #)		63 212				37.9 135				29.7 104
15	57.66	MECH. HP TORQUE (1000 " #)		51 214				32.1 136				25.1 105
12.5	70.62	MECH. HP TORQUE (1000 " #)		43 216				26.2 137				20.8 106
10	86.50	MECH. HP TORQUE (1000 " #)		34 214				21.5` 139				16 106
8.3	105.9	MECH. HP TORQUE (1000 " #)		29 220				18.0 141				13 107
6.8	129.7	MECH. HP TORQUE (1000 " #)		25 225			·	14.4 143				11 108
5.5	158.9	MECH. HP TORQUE (1000 " #)		20 225				12.3 145			10.5 124	9.6 108
4.5	194.6	MECH. HP TORQUE (1000 " #)	16 224					10.3 146			8.6 125	7.3 101
3.8	238.4	MECH. HP TORQUE (1000 " #)	13.5 226					8.4 147			7.3 126	5.9 101
3.0	291.9	MECH. HP TORQUE (1000 " #)	11 231				6.5 136				5.9 126	
2.5	357.5	MECH. HP TORQUE (1000 " #)	9 226				5.5 138				4.9 127	·
2.0	437.9	MECH. HP TORQUE (1000 " #)	7 220				4.5 141				3.9 127	
1.6	536.3	MECH. HP TORQUE (1000 " #)	6 232				3.5 138				3.2 127	
1.3	656.8	MECH. HP TORQUE (1000 " #)	233				3 140				2.7 127	
1.1	804.5	MECH. HP TORQUE (1000 " #)				•					2.2 128	
.9	985.3	MECH. HP TORQUE (1000 " #)			-3	N TNL	ISCO	D			1.4 103	

Effective: 1, August 1984

Moduline®

In-Line Speed Reducers Type R

Section 255

Page 1

MOUNTING POSITION

Mounting Positions (viewed from output end.)

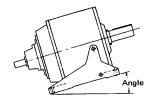
Floor Mounted

Standard Position F

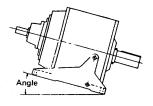
Ceiling Mounted

Standard Position C

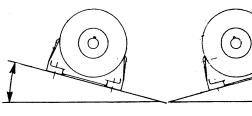
Left Hand Wall Mounting


Standard Position W-L

Right Hand Wall Mounting


Standard Position W-R

For mounting position W-L on sizes 85, 88, 92 and 98, please contact Nuttall Gear.


Position F-I

Output shaft up maximum 10 degrees

Position F-D

Output shaft down maximum 15 degrees

Position F-RR

Position F-RL

For units with inclines or declines exceeding the above, please contact

Nuttall Gear.

For units mounted as above, please contact Nuttall Gear.

Vertical Mounting

Position W-D

Vertical wall mtg. shaft down

Position VF-D

Vertical flange mounting shaft down

For foot mounted or flange mounted vertical units, please see modification section.

For vertical units with drywell construction, please see section 600.

Effective: 15, July 1984

Supersedes: New Page

Moduline[®]

	Gear Case Size	05	10	15/21	32	43	51/54	64	76	85/88	92	98
1. Special	Shafts (Input or Output)											
A. Ba	esic Addition							1				
1.	Any modification up to standard length.											
	1 - 5 units	150	150	155	175	185	215	230	260	365	425	48
	6 - 25 units	90	90	95	100	110	125	140	155	220	260	30
	26 + units	55	55	60	65	70	85	95	105	145	170	19
B. 1.	For each 5" or fraction above standard iength add –	40	40	55	55	60	75	90	110	150	200	24
2.	For special features other than length, add the following charges to the basic addition.											
	A. Drilling and tapping end of shaft.	30	30	35	35	40	45	45	55	70	85	10
	B. Special Keyway	30	30	35	35	40	45	45	55	70	85	10
	C. Splined Shaft	90	90	95	100	110	130	140	155	220	260	30
ww	 D. Special Diameter: One special diameter is included in the basic addition, For each additional di- 				-							
	ameter add the following.	30	30	35	35	40	45	45	55	70	85	10
	E. Threaded shaft: For each set of threads.	30	30	35	35	40	45	45	55	70	85	10
	F. Tapered shaft with threaded end.	- 70	70	80	85	90	110	120	130	180	210	24
There chased Pressi lings, materi portati	ting Customer's Equipment is no charge for Mounting Equipment pur- d thru Nuttall Gear. ng customer's material on output shaft (coup- sprockets, pinions). NOTE: Customer's ial must be delivered to Nuttall Gear trans- ion prepaid and ready for mounting. Ship- must be marked for application to specific and item number. Any machining of custo-											
mer's Gear	material must be negotiated with Nuttall in advance of mounting. Nuttall Gear is not	120	120	125	140	145	160	170	185	205	215	2:
respor mater	nsible for loss or damage to customer's ial.											

DISCOUNT N-3

Effective: 15, July 1984

MODIFICATIONS

Moduline®

In-Line Speed Reducers

	Gear Case Size	05	10	15/21	32	43	51/54	64	76	85/88	92	98
3.	Mounting Positions. There is no additional charge for floor, wall, or ceiling mounted units in which the shaft is horizontal, or for floor mounted units whose shaft is inclined up to 10 degrees or declined up to 15 degrees from horizontal.											
	A. Vertical shaft down (foot mounted)	110	110	130	165	210	275	335	440	-	-	_
	B. Vertical shaft down (flange mounted) Note: Moduline units, other than dry well construction or veri-dri units, running at 155 rpm or greater may run too hot with the low speed shaft down, therefore the thermal hp capacity should be reduced by approximately 30 percent.	265	265	330	400	525	680	835	995	-	-	
	C. Vertical shaft down (dry well construction)	Refe	er to Ve	eri-Dri S	Section	- 600	-					
	D. Shaft - up				REFE	R TO I	ATTU	LL OF	FICE			
	E. Horizontal (with rotation about shaft)				REFE	R TO I	ATTU	LL OF	FICE			
4.	Mill & Chemical Features (gearcase only) Note: Mill and chemical features include wet end											
_	seals and epoxy paint.	35	35	40	50	60	85	110	130	180	215	24
5.	Special Paint A. Addition for standard commercial paints, available in one gallon units.	85	85	100	110	135	155	155	170	195	195	21
	B. Customer supplied paint.			L 1	REFE	R TO	NUTTA	ALL OF	FICE			
	C. Primer only.	25	25	25	25	25	25	25	25	25	25	2
	D. Special primers, paints, finish.		L	<u> </u>	REFE	R TO	NUTTA	ALL OI	FICE	·		
6.	Special Seals											
	A. Wet end for moisture laden atmosheres such as wet end paper mill drives.	35	35	40	50	60	85	110	130	180	215	26
	Taconite duty: for taconite, cement or other abrasive dust atmospheres. If dust is not abrasive no modification is needed.	150	150	190	245	300	400	495	600	1005	1280	147
7		130	130	130	L	I	NUTT	L	L		1200	1147
	Slide Rails (pair) Oil Sight Gauge	35	35	35	35	35	35	35	35	35	35	3
	Special Output Speeds 1 - 2 units	615	615	615	615		615	615	615	615	615	61
٥.	3 - 24 units	325	325	325	325	325	325	325	325	325	325	32
	25 + units	No ch	arge.	1		l	<u> </u>	<u> </u>			·	
10	Backstops (factory installed)	322	365	400	400	490	555	555	975	1520	2130	21:
	The Largest built-in backstop has a maximum rating of 215 ft. lbs. at service factor 1.0. Backstops requiring higher capacity must be externally mounted on a longer than standard H.S. shaft. Refer to Nuttall Gear for selection and pricing.							~				
11.	Bed Plate Only Prices are based on bedplates of standard dimensions suitable for mounting the speed reducer and motor only. Refer to section 260 page 2 for outline dimensions.	660	660	66Ó	830	830	1125	1125	1125	1425	1830	183
12.	Piggyback Motor Mount (does not include sheaves, belts, or belt guard) See dimensions Section 260 pages 7 and 8.	350	350	350 UNT I	350	410.	475	475	475	690	870	87

Effective: 1, March 1985

Supersedes: 1 October 1984

Moduline[®]

Gear Case Size		05	10	15/21	32	43	51/54	64	76	85/88	92	98
3. C—Flange Motor Adaptors are available to accommodate standard NEMA motor mounting,	Motor Frames											
using standard motor flange and shaft dimensions. (includes standard coupling)	56/140		 									
(merades standard coupling)	180											
	210											
	250											Г
PLEASE REFER TO NUTTALL OFFICE	280											
FOR PRICE & AVAILABILITY	320											
	360											
	400											
	440											
4. Scoop Mounted Motor Brackets, including coupling, to accommodate standard NEMA foot mounted motors. (Double, triple and quadruple reduction only)	Motor Frames					Scoop All-Mo		ted Typarmoto	pe U ors			
	140	185	185	185	185	185	215	215	215	275	310	31
	180	205	205	205	205	205	235	235	235	310	375	37
	210		205	220	220	220	250	250	250	330	390	39
	250				235	235	275	275	275	370	435	43
	280		<u> </u>		260	260	310	310	310	390	500	50
	320					295	310	310	310	390	500	50
	360						360	405	405	485	590	59
	400		ļ						405	485	590	59
	440									485	590	59
Coupling Guards (High Speed End) A. For use with reducer and motor mounted bedplate.	on	300	300	300	300	320	320	320	360	360	360 .	36
B. For use with motor mounted on scoop.		100	100	115	140	155	175	175	190	220	220	24
These coupling guards are designed to me OSHA standards when used with MODULII Reducers and Nuttall supplied couplings.								.,,			220	
16. Coupling Guards (Low Speed End)				. 1	REFER	TO N	UTTAI	L OF	ICE			
17. Export Boxing: Under Deck - Overseas Packing				(N		6% Ne m \$10						

DISCOUNT N-3

Effective: 15, March 1985 Supersedes: 1 October 1984

In-Line Speed Reducers Type R

Moduline®

ENGINEERING DATA EXACT GEAR RATIOS

AGMA					Sing	gle Reducti	ion Units						Nom Out Spe With Spee	put eds input	
Nominal Ratio		105	21\$	32S	435	54S		76S	·			1750	1430	1170	870
1.225		1.271	1.265	1.275	1.271	1.271		1.271				1430	1170	950	700
1.500		1.535	1.578	1.578	1.535	1.512		1.535				1170	950	780	580
1.837		1.868	1.850	1.854	1.868	1.868		1.868				950	780	640	470
2.250		2.203	2.257	2.314	2.303	2.303		2.303				780	640	520	390
2.756		2.759	2.800	2.806	2.793	2.793		2.793				640	520	420	320
3.375		3.360	3.560	3.538	3.542	3.542		3.542				520	420	350	260
4.134		4.190	4.227	4.318	4.190	4.190		4.238	Ll			420	350	280	210
					Dou	ble Reduct	ion Units						•		
	05D	10D	21D	32D	43D	51/54D	64D	76D	85/88D	92D	98D				
4.134	4.12	4.12	4.119	4.125	4.128	4.131	-	4.125	4.099	-	-	420	350	280	210
5.06	5.141	5.141	5.079	5.169	5.150	5.154	5.023	5.147	5.017	-	-	350	280	230	115
6.20	6.209	6.209	6.386	6.399	6.220	6.130	6.269	6.216	6.145	6.257	6.142	280	230	190	140
7.59	7.559	7.559	7.488	7.518	7.572	7.577	7.614	7.567	7.575	7.658	7.528	230	190	155	115
9.30	9.317	9.317	9.136	9.386	9.333	9.340	9.327	9.327	9.248	9.418	9.311	190	155	125	95
11.39	11.70	11.70	11.33	11.38 14.35	11.32	11.33 14.36	11.58 14.08	11.31 14.34	11.35 13.94	11.56 14.24	11.238 13.767	155 125	125 100	100	77
13.95	14.33 16.95	14.33 16.95	14.41 17.11	17.51	14.35 16.98	16.99	17.48	17.16	16.99	17.30	16.681	100	84	84	62
7.09 20.93	20.45	20.45	20.45	20.92	20.49	20.50	21.22	20.48	20.90	21.28	20.90	84	68	68 56	50
25.63	25.41	25.41	25.65	25.09	25.40	25.42	25.19	25.15	25.85	26.33	25.40	68	56	45	34
31.39	30.65	30.65	30.65	31.25	30.65	30.65	23.13	20.10	31.65	32.23	29.95	56	45	37	28
38.44	-	-	37.54	37.49	37.99	37.99	_	_	37.93	38.62	-	45	37	30	22
			15/21T	32T	Tripl 43T	e Reductio		767	85/88T	027	700				
						 	64T	76T		92T	98T				├─
31.39			31.83	31.89	32.28	31.89	32.11	31.97	32.16	-	-	56	45	37	28
38.44			38.44	38.52	38.98	40.10	39.75	38.61	38.84	40.00	38.98	45	37	30	22
47.08			46.79	46.89 57.79	47.45	47.02	46.70	47.00	48.20	49.06 58.38	47.45 58.49	37	30	25	18
57.66 70.62			57.68 72.45	72.59	58.49 73.47	57.37	58.30 70.70	. 57.93 70.25	58.21	58.38 72.15	70.93	30	25	20 16.5	15
86.50			88.70	88.87	89.95	71.16 90.48	89.15	89.08	70.86 87.35	88.95	89.94	25 20	20 16.5	13.5	12. 10
105.9			104.9	105.2	106.4	107.4	108.8	105.4	105.9	107.9	107.6	16.5	13.5	11	8.
129.7			126.6	126.9	128.4	128.4	129.9	127.2	134.3	136.8	128.4	13.5	11	9	6
158.9			157.3	157.3	159.2	157.3	155.9	157.6	158.9	161.8	157.7	11.0	9	7.5	5.
194 6			189.8	189.5	192.1	191.9	-	-	191.7	195.3	-	9	7.5	6	4.
238.4			-	-	-	235.1	-	-	237.7	-	242.0	7.5	6	5	3
					Quadru	ple Reduc	tion Units								
				32Q	43Q	54Q	64Q	76Q	88Q	92Q	98Q				
194.6				197.3	199.7	197.6	199.4	200.6	201.8	-	197.06	9	7.5	6	4.5
238.4				283.3	241.2	243.6	242.8	235.7	237.1	-	239.9	7.5	6	5	3.8
291.9				290.1	293.6	305.9	299.3	294.3	296.1	315.1	295.7	6	5	4	.3.0
357.5				357.6	361.9	374.5	375.9	356.9	359.0	382.1	358.6	5	4	3.2	2.5
437.9				449.2	454.6	443.2	460.2	450 0	452.7	484.5	454.7	4	3.2	2.7	2.0
536.3				549.9	556.5	534.6	544.5	549.1	552.4	573.2	538.0	3.2	2.7	2.2	16
656.8				650.6	658.5	662.5	656.9	655.9	659.8	691.8	649.1	2.7	2.2	1.8	1.3
804.5				785.0	794.4	799.2	-	786.8	791.5	-	-	2.2	18	1.5	11
985.3	i			973.0	984.8	- 1	-	l -	989.0	_	- 1	1.8	1.5	1.2	1 :

Effective: 1, March 1985

Supersedes: 15 July 1984

In-Line Speed Reducers

ENGINEERING DATA OVERHUNG LOAD, THRUST RATINGS

Type R

Moduline[®]

Output Shaft - Overhung Load and Thrust Capacities **Single Reduction**

Gear	Pounds	Output R	pm							
Size		1430	1170	950	780	640	520	420	350	280
105	Overhung Load	300	320	360	400	420	450	500	540	580
	Thrust (Down or Out)	130	190	270	340	400	475	525	590	600
	Thrust (Up or In)	130	190	270	340	400	475	525	590	600
218	Overhung Load	650	720	800	860	930	1000	1075	1140	1200
	Thrust (Down or Out)	540	630	770	880	1000	1120	1160	1190	1210
	Thrust (Up or In)	540	630	770	880	1000	1120	1160	1190	1210
328	Overhung Load	900	980	1075	1150	1250	1360	1490	1500	1500
	Thrust (Down or Out)	950	1090	1200	1200	1200	1200	1200	1200	1200
	Thrust (Up or In)	950	1090	1200	1200	1200	1200	1200	1200	1200
435	Overhung Load	920	1000	1080	1170	1180	1300	1400	1500	1500
	Thrust (Down or Out)	500	675	825	900	900	900	900	900	900
	Thrust (Up or In)	500	675	825	900	900	900	900	900	900
54S	Overhung Load	1000	1000	1000	1000	1000	1050	1090	1180	1200
	Thrust (Down or Out)	775	775	775	775	775	775	775	775	775
	Thrust (Up or In)	775	775	775	775	775	775	775	775	775
76\$	Overhung Load	1000	1000	1000	1000	1000	1000	1000	1025	1100
	Thrust (Down or Out)	775	775	775	775	775	775	775	775	775
	Thrust (Up or In)	775	775	775	775	775	775	775	775	775

Output Shaft - Overhung Load and Thrust Capacities

Gear	Pounds	Outpu	t Rpm											
Size		420	350	280	230	190	155	125	100	84	68	56	45	37 and Below
05	Overhung Load Thrust (Down or Out) Thrust (Up or In)	870 640 600	970 700 660	1060 780 720	1140 830 780	1220 910 830	1300 990 900	1400 1080 970	1500 1180 1050	1600 1280 1130	1700 1380 1220	1700 1500 1300		
10	Overhung Load Thrust (Down or Out) Thrust (Up or In)	1000 860 700	1100 920 760	1160 1000 820	1240 1050 880	1320 1130 930	1400 1210 1000	1500 1300 1070	1600 1400 1150	1700 1500 1230	1700 1600 1320	1700 1720 1400	1700 1850 1500	
15/21	Overhung Load Thrust (Down or Out) Thrust (Up or In)	1260 1220 1000	1330 1300 1060	1420 1400 1150	1500 1500 1230	1600 1600 1300	1700 1720 1400	1800 1850 1500	1930 2000 1620	2020 2110 1720	2150 2260 1850	2300 2420 1970	2300 2600 2120	2300 2600 2200
32	Overhung Load Thrust (Down or Out) Thrust (Up or In)	1600 1640 1430	1690 1750 1520	1800 1880 1640	1920 2000 1750	2020 2150 1870	2150 2300 2000	2300 2470 2150	2450 2660 2320	2580 2820 2450	2750 3020 2630	2900 3250 2810	3000 3500 3000	3000 3500 3000
43	Overhung Load Thrust (Down or Out) Thrust (Up or In)	1950 2270 2000	2050 2420 2150	2200 2600 2320	2340 2800 2470	2480 2950 2640	2620 3200 2800	2800 3400 3050	3000 3700 3270	3150 3900 3460	3370 4200 3710	3570 4500 3950	3800 4800 4300	4000 5000 4500
51/54	Overhung Load Thrust (Down or Out) Thrust (Up or In)	3450 3600 2850	3680 3850 3000	3920 4150 3260	4180 4400 3500	4400 4700 3740	4700 5000 4000	5000 5400 4300	5000 5800 4650	5000 6150 4950	5000 6600 5300	5000 7000 5650	5000 7400 6100	5000 7400 6200
64	Overhung Load Thrust (Down or Out) Thrust (Up or In)	••••	4400 4600 3600	4700 5000 3900	5000 5300 4200	5300 5700 4500	5600 6000 4800	6000 6500 5200	6400 7000 5600	6750 7400 5900	7200 7900 6400	7600 8500 6800	8000 9000 7300	8000 9000 7500
76	Overhung Load Thrust (Down or Out) Thrust (Up or In)	5200 5050 4100	5450 5350 4350	5850 5750 4700	6200 6150 5000	6600 6550 5350	7000 7000 5750	7450 7500 6200	8000 8100 6650	8400 8550 7100	8950 9150 7600	9500 9800 8100	10000 10500 8700	10000 11000 9000
85/88	Overhung Load Thrust (Down or Out) Thrust (Up or In)	10000 9500 9500	10500 10000 10000	11250 10750 10750	12000 11500 11500	13000 12500 12500	14500 13500 13500	15250 14750 14750	16500 16250 16250	17750 17500 17500	19250 20000 20000	20000 20000 20000	20000 20000 20000	20000 20000 20000
92	Overhung Load Thrust (Down or Out) Thrust (Up or In)			12000 14000 12750	12800 15000 13600	13800 15800 14500	14800 16900 15500	16000 18000 16500	17400 19500 18000	18500 20500 19000	10000 22000 20500	21500 23400 21500	22500 25000 23000	22500 25000 23000
98	Overhung Load Thrust (Down or Out) Thrust (Up or In)			12800 12400 12000	13700 13000 12600	14800 14000 13200	16000 15100 14000	17700 16900 15300	19000 18000 16700	20400 19200 17900	22000 20000 18200	22800 20400 18500	22800 20400 18500	22800 20400 18500

Note: The thrust capacities published above are for units with pure thrust loads. Refer to Nuttall Gear when there are combined radial and thrust loads or when loads exceed capacities listed. Indicate direction of rotation of shaft and location and direction of applied load.

Effective 15, July 1984

Supersedes: New

In-Line Speed Reducers

Moduline®

Type R

ENGINEERING DATA
OVERHUNG LOAD DETERMINATION

Overhung Load Capacities

Moduline Reducers provide generous overhung load capacity which is seldom exceeded; however, when a pulley, sprocket or pinion is to be mounted on the output shaft, the overhung load capacity of the Reducers must be checked.

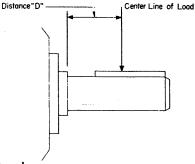
The overhung load capacities listed in Section 257, Page 2 are calculated for a sprocket, pinion or pulley mounted with the centerline of its face at the midpoint of the output shaft extension.

If the sprocket, pinion or pulley is to be mounted at a location other than the above, use the following formula to calculate the overhung load on the shaft after selecting appropriate Lc and Lf factors from the tables below.

If the calculated overhung load for the Reducer selected exceeds the capacity listed in the table, select the next larger Reducer.

Overhung Load Formula

OHL (lbs) =


motor hp x 126,000 x L_c output rpm x pitch diameter (inches) x L_r

-							
١.	200	~	nn	actio	n Ean	+~-	

Type of Load Connection	Factor, L _c
Sprocket	1.00
Pinion	1.25
V-Belt	1.50
Flat Belt	2.50

Shaft Dia.	"D"	— Dis	stance	From	Center	Line o	f Load	to Rec	lucer \$	Shaft	Shoul	der, Ir	nches			
Inches	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5
.875	1.06	.90	.77	.68							•	•	• • •			
1.125	1.12	.98	.83	.74					• • •		• • •		• • •	• • •	• • •	
1.375	1.15	1.03	.91	.79	.73	• • • •			• · ·	• • •	• • •	• • •		• • •	• • •	• • •
1.500	1.17	1.06	.94	.83	.76	.70										
1.625	1.18	1.08	.97	.86	.78	.73	.68									
1.875	1.22	1.13	1.04	.94	.85	.78	.74	.69				• • •			• • •	
2.125	1.23	1.14	1.06	.96	.88	.80	.76	.71	.67							
2.375	1.24	1.17	1.09	1.01	.94	.85	.79	.75	.71	.67						
2.625	1.25	1.18	1.11	1.04	.97	.89	.82	.77	.74	.70	.67				• • •	
3.125	1.25	1.22	1.15	1.09	1.04	.97	.91	.85	.79	.76	.73	.70				
3.625	1.25	1.24			1.08	1.02	.97	.91	.86	.80	.78	.75	.72	.69		
4.500	1.25	1.25	1.23	1.18	1.14	1.08	1.04	1.00	.96	.92	.87	.83	.79	.77	.74	.72
5.000	1.25	1.25	1.24	1.20	1.16	1.12	1.07	1.04	.99	.95	.91	.87	.83	.79	.77	.75
5.500	1.25	1.25	1.25	1.20	1.17	1.13	1.08	1.05	1.00	.91	.83	.77	.72	.67	.63	.59

Gear	Output		Input			
Size	Single	Double, Triple & Quadruple	Single	Double	Triple	Quad- ruple
5/10	1.125	1.375	.875	875		
15/21	1.500	1.625	1.125	1.125	.875	
32	2.125	1.875	1.375	1.375	.875	.879
43	2.125	2.125	1.625	1.625	1.125	.87
51/54	2.375	2.625	1.625	1.625	1.375	.879
64		3.125		1.875	1.375	.87!
76	2.375	3.625	1.625	2.125	1.625	1.129
85/88		4.500		2.125	1.625	1.125
92		5.000		2.125	1.625	1.629
98		5.500		3.00	2.125	1.625

Example

A belt conveyor is to be driven by a 5 hp size 21 D Moduline Reducer, 280 rpm output using a 4" diameter V-belt sheave on the output shaft. The output shaft diameter on a size 21D is 1.625 inches. The centerline of the load is to be placed 1.5 inches from the shaft shoulder.

Procedure – Calculate overhung load $L_c = 1.50$ and $L_f = 1.08$

OHL=
$$\frac{5 \times 126,000 \times 1.50}{280 \times 4 \times 1.08}$$
=781 lbs.

Refer to overhung load table. Since the overhung load capacity of the gear size 21D at 280 rpm is 1420 lbs., the gear unit has ample capacity.

Input	Unit Siz	e								
Rpm	5/10	15/21	32	43	51/54	64	76	85/88	92	98
Single a	nd Double	Reduction								
1750	150	200	250	350	500	575	650	650	700	750
1430	160	210	265	370	530	615	700	700	740	800
1170	170	230	290	400	570	655	740	740	800	860
870	185	250	320	430	620	710	800	800	870	930
720	195	260	340	466	650	750	850	850	910	950
580	210	280	360	490	700	800	900	900	980	1050
Triple F	Reduction									
1750		150	150	200	250	250	350	350	500	550
1340		160	160	210	265	265	370	370	530	600
1170		170	170	230	290	290	400	400	570	630
870		185	185	250	320	320	430	430	620	680
720		195	195	260	340	340	460	460	650	715
580		210	210	280	360	360	490	490	700	770
Quadru	ple Reduct	ion	······			·····				
1750			150	150	150	150	200	200	200	250
1430			160	160	160	160	210	210	210	265
1170			170	170	170	170	230	230	230	290
870			185	185	185	185	250	250	250	310
720			195	195	195	195	260	260	260	325
580			210	210	210	210	280	280	280	350

Effective: 1, May 1984

ENGINEERING DATA SERVICE FACTORS

In-Line Speed Reducers Type R

Service Factors

To provide long life and reliability for any given application, a suitable service factor must be applied to the gear drive rating.

The required equivalent horsepower or equivalent torque necessary to select a reducer from the rating tables is found by multiplying the load horsepower or torque by the service factor.

The gear drive selected will require a rating equal to or in excess of the equivalent horse-power or equivalent torque.

Table 1 shows the recommended minimum service factors for various load characteristics and duration of service with common types of prime movers.

Table 2 lists "Application Classification" for many common speed reducer applications, according to the nature of the load and the usual duty cycle. The three types of load classifications shown: uniform, moderate shock and heavy shock, are used in conjunction with Table I to arrive at a numerical value. It is not possible to list all possible applications requiring gear drives, but a sufficient variety of types is covered to serve as a guide for other applications.

It should be noted that the values given in the tables are based on field experience of average operating conditions for each class of equipment and may not be correct in all cases, due to unique operating conditions or design of the driving or driven equipment.

Proper service factors can be determined if full operating conditions are known, and it is necessary to have this data before a final gear drive selection is made. Any drive for use under abnormal conditions must be referred to Nuttall Gear.

Basic conditions to be observed before applying service factors are as follows:

1. Excessive Overloads

The maximum momentary or starting load must not exceed 200 percent of rated load (100% overload). Rated load is defined as the unit rating with a service factor of 1.0. Driven equipment with high inertia loading, sleeve bearings, etc., may require higher service factors than indicated because of the high momentary torque required for breakaway. Expected breakaway and shock load torques must not exceed 200% rated gear torque.

2. Oversize Prime Mover The practice of using oversize motors for motor standardization or starting conditions must be given special attention due to the potential high starting torque available.

Selecting reducers on the basis of calculated or brake horsepower is satisfactory provided the available motor does not have a starting torque which exceeds the capacity of the reducer. For cases where the motor rating exceeds the calculated HP by a considerable amount, it is advisable to have at least a service factor of 1.0 of the motor rating for standard Nema 'B' motors.

- 3. Braking Conditions When the rating of a shaft mounted or motor mounted brake exceeds the motor rating, the rating of the brake must be used in selection of the reducer.
- 4. Drive-Train Vibrations Gear reducers are sold with the understanding that the entire system of rotating parts is free from serious critical speeds or torsional vibrations. Calculation required to check entire system is the responsibility of the systems builder, however details of reducer rotating parts sufficient for such calculations, are available on request at time of order.
- 5. Pulsating Loading The responsibility for satisfactory operating of reducers driving or driven by pulsating or reciprocating apparatus such as compressors, pumps, internal combustion engines is assumed by Nuttall Gear provided that:
- a. The gears are not operated with torque reversals at the gear mesh, except when starting or stopping.
- b. When loaded, the torque variation at the gear mesh does not exceed $\pm 25\%$ of average transmitted torque.
- c. When unloaded, the torque variation at the gear mesh does not exceed $\pm 15\%$ of rated torque with no negative torque.

Thermal Ratings

The thermal horsepower rating represents the actual horsepower that a gear drive will transmit continually for more than three (3) hours without overheating. Maximum sump temperature is not to exceed 200°F.

It is not necessary to check thermal horsepower ratings when the continuous operating period is three (3) hours or less, and the shutdown time equals or exceeds the running time. If however, the running time exceeds the shutdown time selection must be made on the basis of an adequate thermal rating.

It is important that the thermal horsepower be checked prior to application, for if the unit develops heat at a faster rate than can be dissipated, premature failure may occur.

Thermal ratings are shown in the rating table for all instances where the thermal rating is less than the mechanical rating at service factor 1.0 condition.

Note: Service factors do not apply to thermal rating. Only the actual transmitted horsepower is subject to thermal horsepower consideration.

In cases where transmitted horsepower ex-

ceeds the thermal rating horsepower, artificial cooling by means of shaft mounted fans or an oil to water heat exchanger will be necessary at added cost. It should be noted that fan cooling may not be effective in high ambient conditions and all such applications must be referred to the factory.

The area in which the reducer is located should allow adequate air circulation. Also, the housing should be free from dust or other material which can become an insulator. Gear drives operating outdoors should be provided with a sun shielding roof structure to eliminate the effects of solar heating. If these precautions are not taken, overheating with premature failure may occur.

Environmental Conditions

Standard speed reducers are basically designed for horizontal floor mounted operation in a heated building where reasonably clean and dry conditions exist. For conditions other than this, special features may be required. Full data should be provided to insure that the gear drive will be adequate.

Some of the more commonly used special features, such as seals for abrasive dust atmosphere, high humidity and special paint are covered in this catalog.

Other conditions such as corrosive or explosive atmospheres, mounting position other than horizontal, high altitude location, etc., must be given careful consideration.

Particular attention is required for operation at high or low temperatures.

Low Temperature Operation

Starting and operating gear drives at temperatures below 40°F could result in damage to the gears and bearings if the pour point of the lubricant is higher than the ambient temperature. This is of particular concern when controlled splash lubrication or circulating lube oil systems with pump and piping are employed. In such cases, it may be necessary to provide immersion heaters in the oil sump also, so as to provide a method of heating the external oil pump and piping at start-up.

High Temperature Operation

Operation at sustained ambient temperatures in excess of 100°F will greatly affect thermal modifications required to provide a reasonable operating temperature. High oil sump temperatures will drastically reduce the life of most lubricants and require frequent oil changes.

Table 1: Recommended Service Factors

Prime Mover	Duration of Service	Driven Ma	chine Load Classificat	ion
		Uniform	Moderate Shock	Heavy Shock
Electric Motor,	Occasional 1/2 hr./day	.50	.80	1.25
Steam Turbine,	Intermittent 3 hrs./day	.80	1.00	1.50
Hydraulic Motor	Over 3 through 10 hrs./day	1.00	1.25	1.75
•	Over 10 hrs./day	1.25	1.50	2.00
Multi-Cylinder	Occasional ½ hr./day	.80	1.00	1.50
Internal Combustion	Intermittent 3 hrs./day	1.00	1.25	1.75
Engine	Over 3 through 10 hrs./day	1.25	1.50	2.00
3	Over 10 hrs./day	1.50	1.75	2.25
Single Cylinder	Occasional ½ hr./day	1.00	1.25	1.75
Internal Combustion	Intermittent 3 hrs./day	1.25	1.50	2.00
Engine	Over 3 through 10 hrs./day	1.50	1.75	2.25
. •	Over 10 hrs./day	1.75	2.00	2.50

Effective: 1, August 1984

In-Line Speed Reducers

Moduline®

Type R

ENGINEERING DATA SERVICE CLASSES

Application	Load Appli	cation	Load	Application Loa	Application	Load
laitators	Fans			Spurring gear(1)H	(b) Cont	tinuous mixersSF=1.50
Pure liquids		fugal	.U	Helical ring gear()		-2 smooth rolls- SF=1.50
iguids and solids		ig towers		Direct connected(1)	=	(if corrugated
Liquids, variable density		uced draft@		Cement kilns () M		rolls are used,
Blowers		ced draft ①	υ.	Dryers and coolers ① M		then use the
Centrifugal		ed draft		Kilns		same service
Lobe		(mine, etc)		Pebble(1)		factors that are
Vane		industrial	M	Plain and wedge bar()M		used for a
Brewing and Distilling		(small diameter)		Tumbling barrels H		Cracker Warmer)
Bottling machinery			. •	Mixers	Ratch drop	mill-2 smooth
Brew kettles, cont. duty			RA.	Concrete mixers, continuous M		SF=1.50
				Concrete mixers, intermittentM		rmer-2 roll; 1 corrugated
Cookers, continuous duty				Constant densityU	Clackel Wal	rollSF=1.75
Mash tubs, cont. duty					Canalian	2 corrugated
Scale hopper, frequent starts	M Recipr	rocating	. Ft	Variable density	Cracker	rollSF=2.00
Can Filling Machines			, IVI	Oil Industry		ed and blend mill-
Cane Knives①		Industry		Chillers		
Car Dumpers		slicer		Oil well pumping@	2 roil	SF=1.25
Car Pullers		l cooker		Paraffin filter press M		ollSF=1.50
Clarifiers		h mixer		Rotary kilns		SF=1.50
Classifiers	M Meat	grinders	. M	Paper Mills①③	Extruders	
Clay Working Machinery	Gene	rators (not Welding)	. U	Agitator (mixer)	(a) Cont	tinuous Screw
Brick press	H Hamn	ner Mills	. Н	Agitator (pure liquors)U	Ope	rationSF=1.50
Briquette machine		s		Barkers, mechanical H	(b) Inter	rmittent screw
Clay working machinery		duty	. Н	Barking drum	Ope	rationSF=1.75
Pug mill		ım duty		Beaters		
Compressors		noists		Breaker stackU	Screens	
Centrifugal		dry Tumblers		CalenderU		
Lobe	M Laune	dry Washers		Chip feeder		e or gravel
		ary wasners sing	M	Chipper		er intake
Reciprocating			. 171	Coating rolls		
Multi-cylinder	ivi Line S	Shafts				posal Equipment
Single cylinder		g processing equipment		Conveyors:		U
Conveyors, Uniformly				Chip, bark, chemU		lersU
Loaded or Fed		line shafts	.υ	Log (incl. slab)	Collectors, circ	
Apron	U Lumb	er Industry		Couch roll	Straightline	<u>u</u>
Assembly	U Barker	rs-hydraulic-mech'l		CutterH		crews
Belt	U Burne	r conveyor		Cylinder moldU	Grit collectors	U
Bucket	U Chain	saw and drag saw	. н	Dryers, paper machine		s
Chain	U Chain	transfer	. н	and conveyor type U	Slow or rapid	mixersM
Flight	U Crane	way transfer	. H	EmbosserU	Sludge collect	torsU
Oven	U De-ba	rking drum	. Н	Extruder		
Screw	U Edger	feed		Fourdrinier rollsU	Vacuum filters	s
Conveyers, Heavy Duty-		feed		Jordan	Slab Pushers	sM
Not Uniformly Fed		chain		Kiln drive	Steering Ge	
Apron		olls		Mt. Hope rollsU		υ
Assembly		eck		Paper rolls	Sugar Indus	
Beit		aul – incline		PlatterM	Cane knives@)
		aul – well type		Presses, felt & suctionU	Cruebare (M
Bucket				PulperH	Milla O	н
Chain	IVI LOGIL	urning device		Pumps, vacuumM	Tausila India	
Flight	w Main	log conveyor	. n		Textile Indus	
Live roll@		earing rolls		Reel, surface typeU		
Oven		r feed chains		Screens, chip and rotary M		
Reciprocating	H Planer	r floor chains		Screens, vibrating		
Screw		r tilting hoist		Size pressU		
Shaker		w merry-go-round conveyor.		Super calender		<u>M</u>
Cranes and Hoists		ases		Thickener, ac drive		inery
Dry dock cranes, see Table 3.	Slab o	conveyor	. H	Thickener, dc drive	Knitting mach	
Main hoists	U Small	waste conveyor-Belt	. U	Washer, ac drive	Looms	
Bridge travel②	Small	waste conveyor-Chain	. M	Washer, dc driveU	Mangles	M
Trolley travel ②		g table		Wind and unwind stands,		M
Crushers		hoist conveyor		core typeU	Pads	M
Ore		hoist drive		Winders, surface typeU	Range drives	2)
Stone	H Transf	fer conveyor	. M	Yankee dryerU		м
Sugar(1)		fer rolls		Plastics Industry	Soapers	M
Sugar⊕ Dredges		drive		Intensive Internal Mixers		
		ner feed	M	(a) Batch MixersSF=1.7	5 Tenter frames	M
Cable reels	17 I FIRTH		N/I	(b) Continuous mixersSF=1.5	- renter names	
Conveyors	vi vvaste	conveyor	· tAt	Batch Drop Mill-2 smooth rolls SF=1.2	5 Winders	
Cutter head drives		nine Tools				
Jig drives		ng roll	. 171	Continuous feed, holding &	Windlass@	
Maneuvering winches		ing press, belt driven@		blend millSF=1.2		cted on basis of 24 hr.
Pumps		planer		Compounding millsSF=1.2	5 commission and	
Screen drive		n press, gear driven		CalendersSF=1.5	O Defende Al	uttall Gear.
Stackers		ng machines	. Н	Extruders	O Apply cery	rice factors to motor rated
Utility winches	M Other	machine tools		(a) Variable speed drive SF = 1.5	bn at hase s	
Elevators	Mai	in drives	. M	(b) Fixed speed driveSF=1.7	o '	·
Bucket, uniform load		ciliary drives	. U	Printing Presses②	Table 3: A	pplication for Dry
Bucket, heavy load	M Meta	l Mills		Pullers	Dock Crai	nes
Bucket, continuous	U Draw	bench, carriage	. M	Barge haul		
Centrifugal discharge		bench, main drive	. M	Pumps		ead, Rotating and
Escalators		ng machines		CentrifugalU	Whirler, Sta	ationary or Moving)
Freight		dryer and scrubber		ProportioningM		nature of these crane
				Reciprocating		
Gravity discharge		eversing@	R.A	Single acting,		following service fac-
Man lifts@		S	. IVI	3 or more cylinders	tors are to b	be used for any dur-
Passenger ②		conveyors		5 or more cylinders		
Extruders (Plastic) ①		n-reversing		Double acting, 2 or more	ation of ser	
Film	U (Group drives		cylindersM	Application	Load Class-
Sheet		Individual Drives		Single acting, 1 or 2 cylinders	ppiloution	ification
Coating		versing(2)		Double acting, single cylinder 2		
		drawing and flattening		Rotary – gear type U	Main Hoist	1.00
Rods		and morressing	NA :	Rotary – lobe, vane		st1.00
Pipe		ne		Rubber Industry		g)1.00
Tubing		winding machine	. IVI		Pototice (C	ing or Slow) . 1.25
	na Baille			Intensive Internal Mixers	rotating (SW	nig di 310W). 1.29
Blow molders		, Rotary Type nd Rod		(a) Batch MixersSF=1.7	E Translite - / Park	ve Wheels) 1.50

Effective: 15 March 1985

Supersedes: 1 August 1984

The ratings shown in shaded boxes in Section 250 are the full mechanical ratings which should be used in applying service factors; however certain ratings are thermally limited and those limits are listed in the table below.

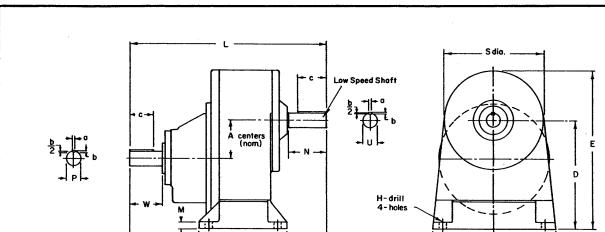
The thermal capacity is the actual horsepower that a reducer will transmit for more than three (3) hours without overheatings. Values are only given if the thermal horsepower capacity is **less** than the mechanical horsepower capacity. If the thermal capacity of the standard unit is not sufficient, check the thermal capacity of a unit with fan-cooling, indicated by an 'F' prefix.

Thermal Horsepower Ratings are based on the following conditions:

- 1. Ambient temperatures must not exceed 100° F.
- 2. Adequate air circulation around gear unit.
- Gear unit must not be covered with any foreign material (coal, cement, grain dust, etc.) which will prevent proper heat dissipation.
- 4. Use of proper gear lubricating oil.
- 5. Correct coupling alignment.

Input	Nominal Gear Ratio	Nominal						CASE	SIZE A	ND TYP	E				
Speed	Gear Natio	Output Speed	54D	64D	76S	76D	F76D	85D	F85D	88D	F88D	92D	F92D	98D	F98D
1750	1.225 1.500 1.837 4.134 5.06 6.20 7.59 9.30 11.39 13.95 17.09 20.93 25.63	1430 1165 950 420 350 280 230 190 155 125 100 84	65 65 66 66	76 76 77 77	100 100 100	87 87 90 92 100 100	170 170 174 ① ①	125 127 128 130	250 ① ①	125 125 127 128 130 132 135	240 240 250 253 ① ①	150 150 151 152 153 155	282 284 286 ① ①	180 180 182 184 186 188 188	300 300 300 300 300 ①
1430	1.225 1.500 4.134 5.06 6.20 7.59 9.30 11.39 13.95 17.09 20.93	1170 950 350 280 230 190 155 125 100 84 68	66 66 67	76 77 77	100 100	89 92 100 100 101 104	139 141 145 145 ①	128 130 132 133	205 208 ① ①	127 128 130 132 133 135	203 205 208 211 ①	150 151 152 154 156	240 242 243 ①	180 181 183 185 186 188 190	280 280 280 280 280 0
1170	1.225 4.134 5.06 6.20 7.59 9.30 11.39	950 280 230 190 155 125 100	67 67	77 78	100	100 100 101 104	125 127 129 ①	130 132 134	182 184 ①	128 130 132 134 136	180 182 184 188 ①	152 153 155 156	212 214 ① ①	184 186 190 194	220 220 220 220 220
870	4.134 5.06 6.20 7.59 9.30 11.39	210 175 140 115 95 77	68	78		100 102 106	109 110 111			129 131 133 135	155 157 159 ①	154 155 156	① ①	184 186 190 194	200 200 200 200 200

① These fan-cooled ratings are not thermally limited. The ratings shown for fan-cooled units in Section 250 are the lower of either mechanical or thermal capacity. The mechanical capacity of fan-cooled units is identical to the non-fan-cooled units, and should be used to apply service factors.


Effective: 15, March 1985

Supersedes: 1 August 1984

Page 1 **DIMENSIONS** SINGLE REDUCTION 10S THRU 76S

Dimensions, Inches Not to be used for construction purposes unless dimensions are approved.

Unit	U①	Key			Α	В	С	D②	E	F	G	Н	J	K	L	М	N
Size		а	b	С													
10	1.125	.25	.25	2.25	3.0	7	9.75	8.50	12.50	.75	5.44	.56	4.06	8.12	15.69	.50	3.00
21	1.500	.38	.38	2.75	3.5	8	12.00	10.25	14.69	.75	6.50	.56	5.25	10.50	17.75	.88	3.50
32	2.125	.50	.50	3.25	4.0	9	15.00	12.19	19.19	.75	7.50	.69	6.69	13.38	20.75	.88	4.25
43	2.125	.50	.50	3.25	5.0	9	15.00	13.19	19.19	.75	7.50	.69	6.69	13.38	21.00	88.	4.25
54	2.375	.50	.50	3.75	6.0	12	19.88	17.00	26.50	.75	10.38	.69	9.19	18.38	24.12	1.00	5.00
76	2.375	.50	.50	3.75	7.5	12	19.88	18.50	26.50	.75	10.38	.69	9.19	18.38	24.12	1.00	5.00

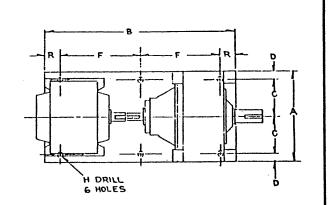
Unit	P(1)	Key			S	T	V	W	X	Approx	
Size		а	b	С	-					Wt. Lbs	
10	.875	.19	.19	1.75	8.00	3.66	.81	2.44	6.59	70	
21	1.125	.25	.25	2.25	8.88	4.25	.75	2.94	7.00	110	
32	1.375	.31	.31	2.50	13.00	5.06	.81	3.31	8.19	180	
43	1.625	.38	.38	2.50	13.00	5.06	.81	3.56	8.44	200	
54	1.625	.38	.38	2.75	16.00	5.88	.75	3.81	7.88	350	
76	1.625	.38	.38	2.75	16.00	5.88	.75	3.81	7.88	350	

Moduline®

Reproduced from Drawing 834-D-185

PRELIMINANT L	CENTIFIED []	PRINT FOR:		
Customer			Customer Order	
G.O.		Cat. No.	Item No.	
Motor Rpm	Output Rpm	Service Factor	Service Hp	Gear Ratio
Application		Signed		Date

Effective: 1, August 1984

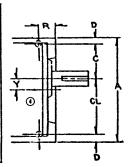

① Tolerance = +.000 to -.001.
② This dimension will never be exceeded. When exact dimension is required, shims up to .03 inch may be necessary.

DIMENSIONS BEDPLATES

In-Line Speed Reducers Type R

Moduline[®]

NOTES:


- See motor dimension sheet
- See speed reducer dimension sheet This dimension will never be exceeded. When exact dimension is required, shims up to .125 inches may be necessary.

Single Reduction

UNIT SIZE	А	В	С	D	E	EL	F	FH3	G	н	j	O MAX	R	s	Z
10 21 32 43 54 76	10.50 12.50 16.00 16.00 20.00 20.00	31.00 34.00 39.00 42.00 47.00 50.00	4.50 5.50 7.00 7.00 8.75 8.75	.75 .75 1.00 1.00 1.25 1.25	4.00 4.00 5.00 5.00 7.00 7.00	9.50 11.00 12.00 13.50 13.00 14.50	13.50 15.00 17.00 18.50 20.00 21.50	12.50 14.25 17.69 18.69 24.00 25.50	.50 .50 .75 .75 1.0	.56 .56 .81 .81 1.06 1.06	4.00 4.00 5.50 5.50 7.00 7.00	18.0 20.19 26.19 26.19 35.0 35.0	2.00 2.00 2.50 2.50 3.50 3.50	4.91 5.50 6.81 6.81 8.62 8.62	.12 .12 .12 .12 .12

Double, Triple, Quadruple Reduction

UNIT SIZE	А	В	С	CL	D	Е	EL	F	FH3	G	Н	J	o Max	R	s	ΥŒ	z
5/10 15/21 32	10.25 12.00 14.50	26.00 32.00 38.00	4.38 5.25 6.25		.75 .75 1.00	4.00 4.00 5.00	7.00 10.00 11.50	11.00 14.00 16.50	9.69 10.25 12.75	.50 .50 .75	.56 .56 .81	4.0 4.0 5.5	15.6 17.2 20.9	2.00 2.00 2.50	4.63 5.56 6.50		.12 .12 .12
43 51/54 64	18.00 20.75 20.75	40.00 46.00 50.00	8.00 9.12 9.12	-	1.00 1.25 1.25	5.00 7.00 7.00	12.50 12.50 14.50	17.50 19.50 21.50	14.75 17.75 17.75	.75 1.00 1.00	.81 1.06 1.06	5.5 7.0 7.0	23.6 28.5 28.5	2.50 3.50 3.50	6.81 9.00 10.25		.12 .12 .12
76 85/88 92	24.00 26.25 28.00	56.00 60.00 68.00	10.75 10.00 10.62	12.75 13.88	1.25 1.75 1.75	7.00 8.00 8.00	17.50 18.00 22.00	24.50 26.00 30.00	19.00 21.50 23.00	1.00 1.25 1.25	1.06 1.38 1.38	7.0 8.5 8.5	31.3 33.9 37.5	3.50 4.00 4.00	11.06 13.62 13.62	1.63	.12 .12 .12
98																	

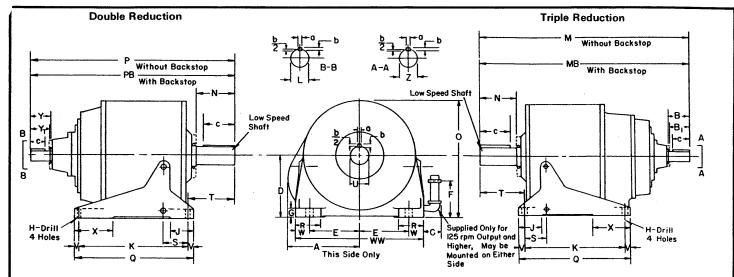
- NOTES:

 ① = See motor dimension sheet
 ② = See speed reducer dimension sheet
 ③ = This dimension will never be exceeded. When exact dimension is required, shims up to .125 inches may
 - be necessary.
 Offset from centerline, sizes 92, 98 only.

Purchaser		-	Purch	. Order No.		Item No.		Dated	
No. Req'd. Unit Size			Assen	nbly Fig.		H.S. Shaft	Rpm		
Motor Make	Нр	Hp Frame No. Furnish by Mto		Mtd. by		L.S. Shaft	Rpm		
Coupling, Pinion, Sprocket	Coupling, Pinion, Sprocket Pulley				1	Mtd. by		Ratio	
G.O.	Size H.S.	Cplg.	Mtd. by		Service I	Rating	Нр	Catalog Rating	Нр
Remarks	emarks			Signed				S.F. (AGMA)	

Effective: 1 August 1986

Supersedes: 15 March 1985



In-Line Speed Reducers

Moduline®

Type R

Page 3
DIMENSIONS
DOUBLE AND TRIPLE REDUCTION
05 THRU 76

Dimensions, Inches Not to be used for construction purposes unless dimensions are approved Dimensions Common to Double and Triple Reduction Units

Unit	U①	Key			Α	С	D②	E	F	G	Н	J	K	N	0	Q	R	S	T	V	W	ww	X
Size		а	b	С																			
5/10 15/21 32 43	1.375 1.625 1.875 2.125	.31 .38 .50 .50	.31 .38 .50	2.00 2.50 3.00 3.25	• • • •	1.7 1.7 1.7 1.7	5.69 6.25 7.25 9.25	4.12 4.50 5.50 7.00	3.4 4.0 4.6 5.7	.8 1.0 1.1 1.3	.438 .562 .688 .812	2.8 3.5 4.0 4.8	9.00 9.75 13.50 15.00	2.6 3.4 3.8 4.4	10.1 11.7 13.9 16.6	10.5 11.1 15.0 17.0	1.6 2.3 2.8 3.3	2.7 2.8 3.2 3.5	3.4 4.3 4.8 5.3	.8 .7 .8 1.0	1.0 1.5 1.8 2.0	12.0 14.5	2.8 2.8 5 5.0 6.5
51/54 64 76	2.625 3.125 3.625	.62 .75 .88	.62 .75 .88	4.00 5.00 6.00	12.3 13.4	1.7	10.75 10.75 12.00	8.00 8.00 9.25	6.7 6.7 7.8	1.3 1.3 1.8	.938 .938 1.062	6.0 4.8	17.25 17.25 20.00	5.3 6.3 7.3	20.0 20.0 22.8	19.3 19.3 22.8	4.0 4.0 4.8	4.5 3.6 4.4	6.5 7.8 8.9	1.0 1.0 1.4	2.4 2.4 2.8	20.8	7.0 7.4

Double Reduction Units

Unit	L(1)	Key			Y	Υ,	PB	Р	Approx.
Size		а	b	c					Wt. Lbs.
5/10	.875	.19	.19	1.8	2.4	2.0	19.1	18.1	77
21	1.125	.25	.25	2.3	2.9	2.5	21.6	20.5	130 🖟
32	1.375	.31	.31	2.5	3.3	2.9	24.7	23.2	165
43	1.625	.38	.38	2.5	3.6	3.1	25.8	24.3	270
51/54	1.625	.38	.38	2.8	3.8	3.2	29.0	27.6	484
64	1.875 ③	.50 ③	.50③	1.8	2.5	2.5	30.4	29.4	550
76	2.125	.50	.50	3.3	4.6	3.9	35.9	34.2	767

Triple Reduction Units

Unit	Z(1)	Key			В	В,	MB	М	Approx.
Size		a	b	С					Wt. Lbs.
15/21	.875	.19	.19	1.8	2.4	2.0	23.8	22.8	140
32	.875	.19	.19	1.8	2.4	2.0	25.9	24.9	225
43	1.125	.25	.25	2.3	2.9	2.5	27.9	26.8	287
51/54	1.375	.31	.31	2.5	3.3	2.9	33.7	32.2	499
64	1.375	.31	.31	2.5	3.3	2.9	36.1	34.6	570
76	1.625	.38	.38	2.5	3.6	3.1	40.0	38.5	773

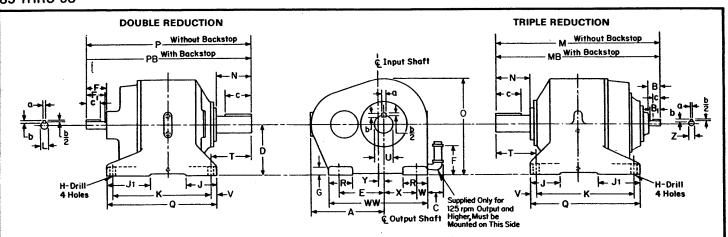
- ① Tolerance = +.000 to -.001.
- This dimension will never be exceeded. When exact dimension is required, shims up to .03 inch may be necessary.
- 3 1.625 diameter, .375 sq. key with backstop.

Note: When Taconite oil seal is required, use dimension Y_1 and B_{11} and add .50 inch to dimensions M, MB, P, PB and T (All units except size 64).

Reproduced from Drawing 823-D-019

PRELIMINARY 🗌	CERTIFIED [PRINT FOR:

Customer		-	Customer Order	
G.O.		Cat. No.	Item No.	
Motor Rpm	Output Rpm	Service Factor	Service Hp	Gear Ratio
Application		Signed		Date


Effective: 1, August 1984

In-Line Speed Reducers

Type R

Moduline®

DIMENSIONS DOUBLE AND TRIPLE REDUCTIONS 85 THRU 98

Dimensions, Inches Not to be used for construction purposes unless dimensions are approved Dimensions Common to Double and Triple Reduction Units

Unit U①	Key	h		A	C	D@	Ε	F max.	G	Н	J	J1	K	N	0	Q	R	T	٧	w	ww	X	Y
85/88 4.500 92 5.000 98 5.500	1.00 1.25 1.25	1.00 .88 .88	7.5 7.5 7.0	19.0 20.6 23.82	2.2 2.2 2.2	13.00 14.50 16.50	11.50 12.62 14.30	9.1 10.2 12.5	2.0 2.3 2.3	1.625 1.875 1.875	9.0	12.5	25.50 28.00 28.75	9.0	27.5	31.5	7.0	11.4	1.8	3.0	28.0	9.38	

Double Reduction Units

Unit	L _①	Key			F	F,	PB	Ρ	Approx.
Size		а	b	С					Wt. Lbs.
85/88	2.125	.50	.50	3.3	4.6	3.6	3	40.1	1227
92	2.125	.50	.50	3.3	4.6	4.1	46.7	43.5	1300
98	3.000	.75	.75	3.7	5.8	4.4	49.7	46.6	2350

Triple Reduction Units

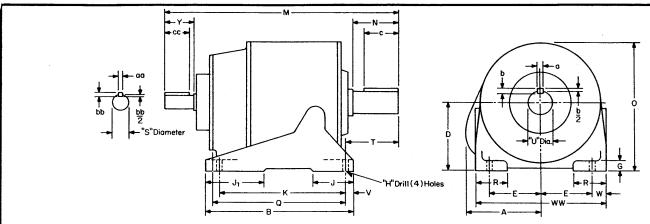
Unit	Z	Key			В	B ₁	MB	M	Approx.
Size		а	b	С					Wt. Lbs.
85/88	1.625	.38	.38	2.5	3.6	3.1	45.9	44.4	1236
92	1.625	.38	.38	2.5	3.8	3.2	47.6	46.2	1450
98	2.125	.50	.50	3.2	4.6	3.9	52.3	50.6	2400
98	2.125	.50	.50	3.2	4.0	3.9	52.3	50.6	2400

- ① Tolerance = +.000 to -.001.
- This dimension will never be exceeded. When exact dimension is required, shims up to .03 inch may be necessary.
- 3 See outline drawing 4122-D-33

Note: When Taconite oil seal is required, use dimension F_1 and B_1 , and add .50 inch to dimensions M, MB, P, PB and T.

Reproduced from Drawing 842-D-238.

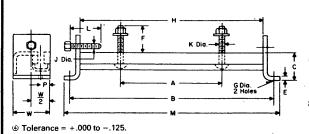
PRELIMINARY 🗌	CERTIFIED [PRINT FOR:		
Customer			Customer Order	
G.O.		Cat. No.	Item No.	
Motor Rpm	Output Rpm	Service Factor	Service Hp	Gear Ratio
Application		Signed		Date


Effective: 1, June 1986

Supersedes: 15, March 1985

Moduline®

Page 5 **DIMENSIONS** QUADRUPLE REDUCTION 32Q THRU 76Q


Dimensions, Inches Not to be used for construction purposes unless dimensions are approved.

Unit	U(1)	Key (L	ow Spee	d)	Α	В	D②	E	G	Н	J	J۱	K	М	N
Size		а	b	С											
32	1.875	.50	.50	3.00		15.0	7.25	5.50	1.1	.69	4.0	5.0	13.50	23.75	3.81
43	2.125	.50	.50	3.25		17.0	9.25	7.00	1.2	.81	4.8	6.5	15.00	24.56	4.38
54	2.625	.62	.62	4.00		19.2	10.75	8.00	1.2	.94	6.0	7.0	17.25	28.19	5.20
64	3.125	.75	.75	5.00	12.3	19.2	10.75	8.00	1.2	.94			17.25	30.63	6.20
76	3.625	.88	.88	6.00	13.4	22.8	12.00	9.25	1.8	1.06	4.8	7.4	20.00	36.85	7.30

Unit	0	Q	R	S	Key (H	igh Speed)		T	٧	W	ww	Υ	Approx.
Size					aa	bb	cc						Wt. Lbs.
32	13.9	15.1	2.8	.875	.19	.19	1.5	4.75	.75	1.8	14.5	2.0	210
43	16.6	15.3	3.3	.875	.19	.19	1.5	5.31	1.0	2.0	18.0	2.0	280
54	20.0	17.8	4.0	.875	.19	.19	1.5	6.50	1.0	2.4	20.8	2.0	500
64	20.0	18.9	4.0	.875	.19	.19	1.5	7.75	1.0	2.4	20.8	2.0	570
76	22.8	21.5	4.8	1.125	.25	.25	2.0	8.94	1.4	2.8	24.0	2.5	775

Moduline Slide Rails

Dimensions, Inches Not to be used for construction purposes unless dimensions are approved

Unit Size	Α	В	C⊕	E	F	G	н	J	К	L	М	Р	w	Tota Adj.
32	11.00	22.00	2.50	.50	2.00	.75	18.50	.50	.62	5.00	23.50	.69	3.00	4.0
43	14.00	26.75	3.00	.50	2.00	.88	23.00	.75	.75	6.00	28.50	.88	3.25	5.0
51/54	16.00	30.75	4.00	.50	1.75	1.00	26.75	.75	.88	7.00	32.75	.94	4.38	6.0
64	16.00	30.75	4.00	.50	1.75	1.00	26.75	.75	.88	7.00	32.75	.94	4.38	6.0
76	18.50	37.50	4.00	.75	2.75	1.25	32.00	.88	1.00	9.50	40.00	1.25	4.75	8.0
85/88	20.25	45.25	4.50	.75	3.75	1.62	39.00	.88	1.50	10.00	48.50	1.50	5.25	9.0
92	22.00	45.25	4.50	.75	3.75	1.62	39.00	.88	1.50	10.00	48.50	1.50	5.25	9.0
98	24.82	45.25	4.50	.75	3.75	1.62	39.00	.88	1.50	10.00	48.50	1.50	5.25	9.0

Reproduced from Drawing 1709-C-71

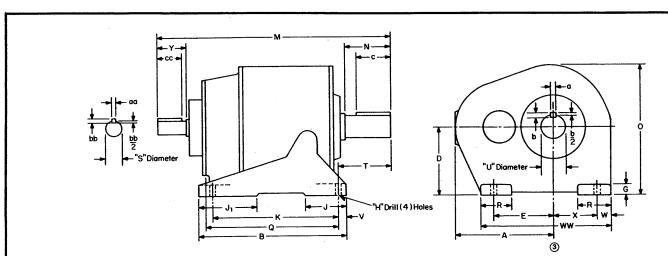
PRELIMINARY		CERTIFIED		PRINT FOR:
-------------	--	------------------	--	------------

Customer			Customer Orde	er .		
G.O.		Cat. No.	Item No.			
Motor Rpm	Output Rpm	Service Factor	Service Hp	Gear Ratio		
Application		Signed		Date		

Effective: 1, October 1984

Supersedes: 1, August 1984

<sup>Tolerance = +.000 to -.001.
This dimension will never be exceeded. When exact dimension is required, shims up to .03 inch may be neces-</sup>


Page 6
DIMENSIONS

88Q THRU 98Q

QUADRUPLE REDUCTION

In-Line Speed Reducers Type R

Moduline®

Dimensions, Inches Not to be used for construction purposes unless dimensions are approved

Unit	U①	Key (Lo	w Speed)		_ A	В	D@	E	G	Н	J	J۱	K	M	N
Size		а	b	С											
88	4.500	1.00	1.00	7.5	19.0	29.0	13.00	11.50	2.0	1.63	8.5	11.5	25.50	42.15	9.0
92	5.000	1.25	.88	7.5	20.6	31.6	14.50	12.62	2.2	1.88	9.0	12.5	28.00	45.87	9.0
98	5.500	1.25	.88	7.0	23.5	32.4	16.50	14.30	2.3	1.88	10.5	14.0	28.75	48.13	9.3

Unit	0	Q	R	S	Key (Hi	gh Speed)		Т	٧	W	ww	· X	Υ	Approx.
Size					aa	bb	cc							Wt. Lbs.
88	23.9	25.0	6.0	1.125	.25	.25	2.0	11.4	1.8	3.0	26.3	8.75	2.5	1235
92	27.5	31.6	7.0	1.625	.375	.375	2.5	11.4	1.8	3.0	28.0	9.38	3.0	1470
98	31.5	32.25	7.0	1.625	.375	.375	2.5	11.5	1.8	3.3	31.4	10.56	3.0	2570

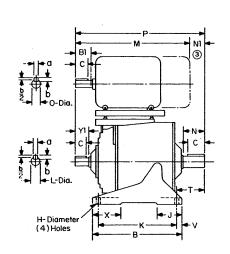
① Tolerance = +.000 to -.001.

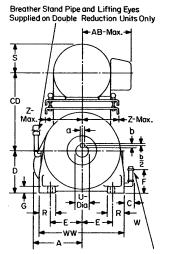
② This dimension will never be exceeded. When exact dimension is required, shims up to .03 inch may be necessary.

Units 92Q and 98Q have input and output shaft offsets of 1.62 and 1.18 inches respectively.

Reproduced from Drawing 1709-C-71

PRELIMINARY 🗌	CERTIFIED [PRINT FOR:			
Customer				Customer Orde	er
G.O.		Cat. No.		Item No.	
Motor Rpm	Output Rpm	Service Factor	Serv	rice Hp	Gear Ratio
Application		Signed			Date


Effective: 1, October 1984


Supersedes: 1, August 1984

Page 7 **DIMENSIONS** PIGGY BACK MOTOR MOUNTING SIZES 05 THRU 54

Moduline®

Supplied Only for 125 Rpm Output and Higher (May be on Either Side.)

Dimensions, Inches Not to be used for construction purposes unless dimensions are approved

Dimensions Common to Double and Triple Reduction Units

Unit	U(I)	Key			Α	В	С	D②	E	F	G	Н	J	K	N	R	T	٧	W	ww	Х	Z
Size		а	b	С																		
5/10	1.375	.31	.31	2.00	5.2	10.5	1.7	5.69	4.12	3.4	.8	.44	2.8	9.00	2.6	1.6	3.4	.8	1.0	10.3	2.8	6.06
15/21	1.625	.38	.38	2.50		11.1	1.7	6.25	4.50	4.0	1.0	.56	3.5	9.75	3.4	2.3	4.3	.7	1.5	12.0	2.8	7.50
32	1.875	.50	.50	3.00		15.0	1.7	7.25	5.50	4.6	1.1	.69	4.0	13.50	3.8	2.8	4.8	.8	1.8	14.5	5.0	8.69
43	2.125	.50	.50	3.25		17.0	1.7	9.25	7.00	5.7	1.2	.81	4.8	15.00	4.4	3.3	5.3	1.0	2.0	18.0	6.5	8.69
51/54	2.625	.62	.62	4.00		19.3	1.7	10.75	8.00	6.7	1.2	.94	6.0	17.25	5.3	4.0	6.5	1.0	2.4	20.8	7.0	9.12

Unit	L①	Key			ΥI	P	Approx.	
Size		a	b	С	_		Wt. Lbs.	
5/10	.875	.19	.19	1.75	2.44	18.06	80	
21	1.125	.25	.25	2.25	2.94	20.50	140	
32	1.375	.31	.31	2.50	3.31	23.19	202	
43	1.625	.38	.38	2.50	3.56	24.25	278	
51/54	1.625	.38	.38	2.75	3.81	27.62	490	

Triple I	Reduction	Units					
Unit	L①	Key			ΥI	Р	Apı
Size		а	b	С			Wt.
15/21	.875	.19	.19	1.75	2.44	22.75	135
22	075	4.0	4.0	4 75	244	24.04	400

	Oille	L(I)	ney			11	r	Approx.
	Size		а	b	C ·			Wt. Lbs.
_	15/21	.875	.19	.19	1.75	2.44	22.75	135
	32	.875	.19	.19	1.75	2.44	24.94	196
	43	1.125	.25	.25	2.25	2.94	26.81	293
	51/54	1.375	.31	.31	2.50	3.31	32.19	505
								

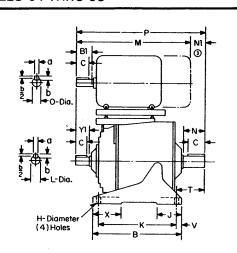
Motor Dimensions						CD Dimensions																	
Motor	0(1)	Key			BI	Drip-proof			TEFC, Expl. Proof			5/10		15/21		32		43		:51/54			
Frame		а	b	С		AB	S	М	Wt.	AB	S	М	Wt.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
143T	.875	.19	.19	1.38	2.12	5.7	3.3	12.7	40	8.2	3.3	13.0	55	12.5	10.0	14.4	11.4	15.4	12.1				
145T	.875	.19	.19	1.38	2.12	5.7	3.3	12.7	45	8.2	3.3	13.0	60	12.5	10.0	14.4	11.4	15.4	12.1				
182T	1.125	.25	.25	1.75	2.50	7.4	4.7	12.8	70	8.46	4.8	14.4	85	13.5	11.0	15.4	12.4	16.4	13.1	17.6	14.4	19.4	15.9
184T	1.125	.25	.25	1.75	2.50	7.4	4.7	13.8	88	8.46	4.8	15.4	100	13.5	11.0	15.4	12.4	16.4	13.1	17.6	14.4	19.4	15.9
213T	1.375	.31	.31	2.38	3.12	8.4	5.5	15.8	110	10.3	5.6	17.7	145			16.1	13.1	17.1	13.9	18.4	15.1	20.1	16.6
215T	1.375	.31	.31	2.38	3.12	8.4	5.5	17.3	130	10.3	5.6	19.2	175			16.1	13.1	17.1	13.9	18.4	15.1	20.1	16.6
254T	1.625	.38	.38	2.88	3.75	10.3	6.6	20.5	230	12.4	6.6	23.0	230					18.6	15.4	19.4	16.1	21.6	18.1
256T	1.625	.38	.38	2.88	3.75	10.3	6.6	22.3	265	12.4	6.6	24.8	270					18.6	15.4	19.4	16.1	21.6	18.1
284T	1.875	.50	.50	3.25	4.38	12.1	7.4	23.3	330	13.3	7.4	25.8	360			.		19.4	16.1	20.1	16.9	22.4	18.9
286T	1.875	.50	.50	3.25	4.38	12.1	7.4	24.8	370	13.3	7.4	27.5	390							20.1	16.9	22.4	18.9
324T	2.125	.50	.50	3.88	5.00	14.3	8.4	26.1	475	17.1	8.5	28.8	550									23.4	19.9
326T	1.875	.50	.50	2.00	3.50	14.3	8.4	26.1	525	17.1	8.5	28.8	610									23.4	19.9

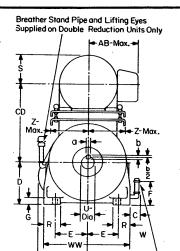
① Tolerance = +.000 to -.001.

- This dimension will never be exceeded. When exact dimension is required, shims up to .03 inch may be necessary
- 3 NI or (P-M) dimension should be checked by customer to be sure that the motor length "M" does not interfere with driven equipment, belt, chain, etc. mounted on output shaft of gear unit.

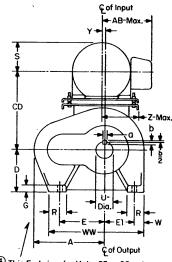
Reproduced from Drawing 5642-D-52

PRELIMINARY [CERTIFIED [**PRINT FOR:**


Customer		Customer Order	Customer Order					
G.O.		Cat. No.	Item No.					
Motor Rpm	Output Rpm	Service Factor	Service Hp	Gear Ratio				
Application		Signed		Date				


Page 8 **DIMENSIONS** PIGGYBACK MOTOR MOUNT SIZES 64 THRU 98

In-Line Speed Reducers


Type R

Moduline®

Supplied only for Output speeds of 125 RPM or Higher. May be located on either side on units up to size 76

4 This End view for Units 85 to 98 only.

Dimensions, Inches Not to be used for construction purposes unless dimensions are approved Dimensions Common to Double and Triple Reduction Units

Unit	U①	Key			A	В	С	D@	E	El	F	G	Н	J	K	N	R	T	V	W	ww	X	Υ	Z
Size		а	b	С																				
64	3.125	.75	.75		12.3										17.25									
76 85/88	3.625 4.500	.88 1.00	.88 1.00		13.4 19.0	22.8 29.0			9.25 11.50						20.00									
92	5.000	1.25			20.6	31.5			12.63						28.00									
98	5.500	1.25	.88	7.0	23.8	32.3		16.50	14.30	10.57		2.3	1.88	10.5	28.75	9.3	7.0	11.5	1.8	3.0	31.4	14.0	1.18	12.88

Double	Reductio	n Units						Triple Reduction Units							
Unit	L(I)	Key			ΥI	Р	Approx.	Unit	L①	Key		··· · · · · · · · · · · · · · · · · ·	ΥI	Р	Approx.
Size		а	b	С	•		Wt. Lbs.	Size	_	а	b	c			Wt. Lbs.
64 76 85/88 92 98	1.875 2.125 2.125 2.125 3.000	.50 .50 .50 .50 .75	.50 .50 .50 .50 .75	1.75 3.25 3.25 3.25 3.7	2.50 4.56 4.56 4.56 5.8	29.40 34.19 40.12 43.50 50.6	560 770 1230 1310 2260	64 76 85/88 92 98	1.375 1.625 1.625 1.625 2.125	.31 .38 .38 .38 .58	.31 .38 .38 .38 .50	2.50 2.50 2.50 2.50 3.2	3.31 3.56 3.56 3.81 4.6	34.62 38.50 44.44 46.19 50.6	580 783 1246 1460 2410

Motor D	imension	ns .												CD D	imensi	ons							
Motor	00	Key			BI	Drip-p	proof			TEFC,	, Expl. P	roof		6	4	7	76	85	/88	92	2	9	8
Frame		а	b	С		AB	S	M	Wt.	AB	S	М	Wt.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
182T	1.125	.25	.25	1.75	2.50	7.4	4.7	12.8	70	8.4	4.8	14.4	85	19.4	15.9	l		Ι				Ĺ	
184T	1.125	.25	.25	1.75	2.50	7.4	4.7	13.8	80	8.4	4.8	15.4	100	19.4	15.9								
213T	1.375	.31	.31	2.38	3.12	8.4	5.5	15.8	115	10.3	5.6	17.7	145	20.1	16.6								
215T	1.375	.31	.31	2.38	3.12	8.4	5.5	17.3	140	10.3	5.6	19.2	175	20.1	16.6			1					
254T	1.625	.38	.38	2.88	3.75	10.3	6.6	20.5	200	12.4	6.6	23.0	230	21.6	18.1.	24.9	20.9	25.4	19.2				
256T	1.625	.38	.38	2.88	3.75	10.3	6.6	22.3	240	12.4	6.6	24.8	270	21.6	18.1	24.9	20.9	25.4	19.2				
284T	1.875	.50	.50	3.25	4.38	12.1	7.4	23.3	330	13.3	7.4	25.8	360	22.4	18.9	25.6	21.6	26.1	21.9	27.9	23.4	29.9	25.4
286T	1.875	.50	.50	3.25	4.38	12.1	7.4	24.8	370	13.3	7.4	27.3	390	22.4	18.9	25.6	21.6	26.1	21.9	27.9	23.4	29.9	
324T	2.125	.50	.50	3.88	5.00	14.3	8.4	26.1	475	17.1	8.5	28.8	550	23.4	19.9	26.6	22.6	27.1	22.9	28.9	24.4	30.9	26.4
326T	1.875	.50	.50	2.00	3.50	14.3	8.4	26.1	525	17.1	8.5	28.8	610	23.4	19.9	26.6	22.6	27.1	22.9	28.9	24.4	30.9	26.4
364T	1.875	.50	.50	2.00	3.50	17.9	9.3	26.6	672	18.8	9.6	30.5	835	24.4	20.9	27.6	23.6	28.1	23.9	29.9	25.4	31.9	
365T	1.875	.50	.50	2.00	3.50	17.9	9.3	27.6	716	18.8	9.6	31.5	920			27.6	23.6	28.1	23.9	29.9	25.4	31.9	
404T	2.125	.50	.50	2.75	4.00	18.9	10.6	29.6	960	20.5	10.8	33.6	1145					29.1	24.9	30.9	26.4	32.9	28.4
405T	2.125	.50	.50	2.75	4.00	18.9	10.6	31.1	1010	20.5	10.8	35.1	1260					29.1	24.9	30.9	26.4	32.9	28.4
444T	2.375	.62	.62	3.00	4.50	21.4	11.8	34.1	1388	26.3	12.1	38.4	1515				'			31.9	27.4	33.9	29.4

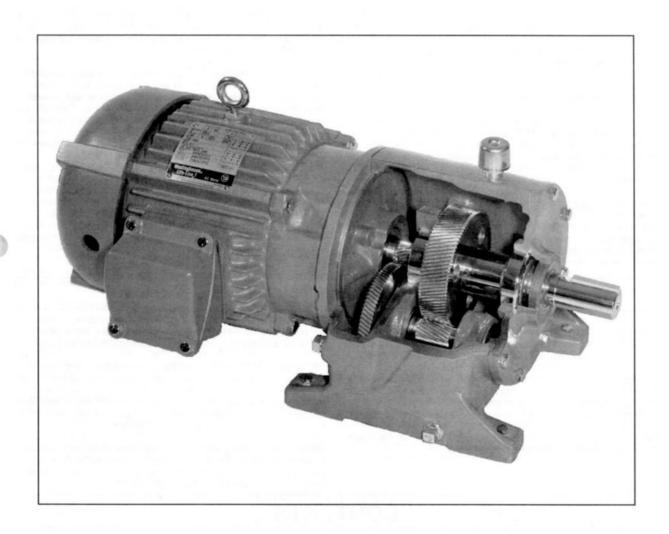
- ① Tolerance = +.000 to -.001. ② This dimension will never be exceeded. When exact dimension is required, shims up to .03 inch may be

- (3) NI or (P-M) dimension should be checked by customer to be sure that the motor length "M" does not interfere with driven equipment, belt, chain, etc. mounted on output shaft of gear unit.
- Reproduced from Drawing 5642-D-52
- (4) Units 92Q and 98Q have input and output shaft offsets of 1.62 and 1.18 inches respectively.

PRELIMINARY [CERTIFIED [PRINT FOR:		
Customer			Customer Order	
G.O.		Cat. No.	Item No.	
Motor Rpm	Output Rpm	Service Factor	Service Hp	Gear Ratio
Application		Signed		Date

ffective: 1, June 1986

upersedes: 15, March 1985


Your Total Drive Source

Moduline Concentric Shaft Speed Reducers

- Installation
- Lubrication
- Maintenance
- Operation
- Replacement Parts

Nuttall Gear 2221 Niagara Falls Blvd. Niagara Falls, NY 14302

Telephone: 716.298.4100 Toll Free: 800.432.0121 Fax: 716.298.4101 Web: www.nuttallgear.com

email: info@nuttallgear.com

WARRANTY

CAUTION: Service and repair under warranty must be performed only by a Nuttall authorized service shop, otherwise the warranty will become void.

Nuttall Gear warrants that the product furnished will be free of defects in material an workmanship for a period not to exceed one year from installation or eighteen months from shipment to the purchaser, whichever is soonest. Upon prompt notification and written substantiation that the equipment has been stored, installed, operated and maintained in accordance with Nuttall recommendations and standard industry practices, Nuttall will correct non-conformity by repair or replacement, at its option, F.O.B. factory.

The warranties set forth in this provision are exclusive and in lieu of all other warranties whether statutory, express or implied (including all warranties of merchantability and fitness for particular purpose and all warranties arising from course of dealing or usage of trade), except of title and against patent infringement. The remedies provided above shall constitute complete fulfillment of all the liabilities of Nuttall whether the claims of the purchaser are based in contract, in tort (including negligence), or otherwise with respect to, or arising out of, the product furnished hereunder.

The system of connected rotating parts—PRIME MOVER AND ACCESSORIES, GEAR UNIT, AND DRIVEN EQUIPMENT—must be compatible; free from critical speeds, torsional or other types of vibration, within the operating range, regardless of the source of such vibration, and/or it's inducement. Nuttall Gear Corporation's responsibility is limited to providing a gear unit within normal commercial levels of vibration generation. Nuttall Gear Corporation is not responsible for the unsatisfactory operation or failure of the drive system, resulting from the incompatibility of rotating components, nor the analysis required. The system responsibility remains with the purchaser, system builder or designer, unless Nuttall Gear Corporation has agreed to perform such analysis, and the nature of such vibrations is fully defined.

Those units supplied with motor/gear couplings mounted must be final aligned by the installer, Nuttall Gear verifies that the motor and gear can be aligned; however, Nuttall Gear does not do final alignment, because of changes that occur during shipment handling as well as foundation variances.

The user is responsible for furnishing and installing any guards or other safety equipment needed to protect operating personnel, even though such safety equipment may not have been furnished by the seller with the equipment purchased.

Nuttall, its contractors and suppliers of any tier, shall not be liable in contract, in tort (including negligence), or otherwise for damage or loss of other property or equipment, loss of profits or revenue, loss of use of equipment or power system, cost of capital, cost of purchased or replacement power or temporary equipment (including additional expenses incurred in using existing facilities), claims of customers of the purchaser, or for any special; indirect, incidental, or consequential damages whatsoever.

The remedies of the purchaser set forth herein are exclusive and the liability of Nuttall with respect to any contract, or anything done in connection therewith, such as the performance or breach thereof, or from the manufacture, sale, delivery, resale, or use of any equipment covered by or furnished under the contract, whether in contract, in tort (including negligence) or otherwise, shall not exceed the price of the equipment or part on which such liability is claimed.

In no event shall Nuttall be responsible for providing working access to the defect, including the removal, disassembly, replacement or reinstallation of any equipment, materials or structure to the extent necessary to permit Nuttall to perform its warranty obligations, or transportation costs to and from Nuttall factory or repair facility. The conditions of any tests shall be mutually agreed upon and Nuttall shall be notified of, and may be present at, all tests that may be made.

INTRODUCTION

The following instructions apply to all Nuttall Gear Moduline gearmotors, gear reducers and motor/reducer packages. If a unit is furnished with special features, refer to the supplemental instructions shipped with the unit or contact Nuttall Gear.

The gear drive is rated according to the latest standard of the American Gear Manufacturers Association, and was selected to suit the load conditions for the service ratings on the nameplate. Proper performance depends on adherence to these operational ratings. Operate this unit only at the ratings shown on the nameplate. Before changing any of these operational ratings, contact your Nuttall Gear representative for factory approval.

To protect warranty, installation and maintenance services must only be performed by trained personnel after reading the instructions. Particular attention must be paid to all nameplates and warning tags.

All warning labels and instructions for installing and operating electrical equipment must be carefully read and followed. All electrical connections must be installed only by qualified personnel in strict accordance with the national electric code and local requirements. Compliance with all codes, laws and safety ordinances is the sole responsibility of the user.

When communicating with your Nuttall Gear sales representative, make reference to the Nuttall nameplate shop order number, the type and rating of the gear drive, serial number, and any other information useful in identifying the gear drive.

CONTENTS

Receiving, handling & Storage	3	Trouble shooting	6
Installation		Renewal parts	
Lubrication	4	Ratio Change	10
Oil capacity	6	Fasteners	11
Start-up.	6	Weights	11

RECEIVING & HANDLING

Immediately upon receipt examine the unit for damage. Notify the carrier and your Nuttall Gear sales representative immediately if there is any evidence of shipping damage. Responsibility for reimbursement for losses or damage in shipment remain solely with the transportation company.

Operating instructions for accessories mounted on the gear unit assembly are normally attached to the unit. Save all hardware, accessories, wiring diagrams, and instruction information included with the unit.

CAUTION:

- Never use shaft extensions for pushing, pulling, or supporting the weight of the unit.
- Never drag the gear unit. Machined mounting surfaces will be marred and overstressing of the housing may occur.
- Never attempt to lift the entire unit by using the motor lifting lugs or eyebolt holes.
- When lifting, use slings to distribute the load evenly and to keep the unit from tilting. Spreader bars may be required to avoid stress on any piping and accessories mounted on the unit.
- Never use piping for lifting or climbing.
- o If the unit is to be stored, refer to the storage instructions in this manual.

STORAGE

General

All internal and unpainted external surfaces of gear drives have been treated at the factory, prior to shipment, with a rust preventative. The protective life of this rust preventative will vary with temperature fluctuations, atmospheric moisture content, degree of exposure to the elements during storage, and degree of contact with other objects. Inspect all machined surfaces and spray or add rust inhibitor to exposed metal surfaces that may have had the protective coating removed in shipping and handling. To assure that the gear drive will operate satisfactorily at start-up, certain precautions must be taken by the customer upon receipt. The expected length of storage and the storage atmosphere dictated the maintenance schedule to be followed. Units must always be stored in their operating position and free of loads or weights on output and input shafts. These instructions apply to the reducer only. If a motor is included in our drive package, motor operating maintenance and storage instructions are included with drawing transmittals and are also attached to the unit. These instructions must be carefully read and followed.

Short Term Storage (Indoor)

If the gear drives are to be stored for a period of 30 days or less, the following should be observed: Store in a clean, dry location with factory packaging intact, and with as nearly a constant temperature as possible. Elevate a minimum of six inches above the floor level. Avoid areas that are subject to extremes in temperature, vibrations, and humidity.

Long Term Storage (Indoor)

If units are to be stored for a period longer than 30 days, the following should be observed:

 Store in a clean dry location with the unit elevated a minimum of six inches above the floor level. Avoid areas that are subject to extremes in temperature, vibrations, and humidity.

- 2. Remove breather and replace with pipe plug.
- Fill gear drive to the recommended oil level with Shell VSI grade 68 oil or equal, heated between 110-120°F. Do Not Overfill. Immediately close openings to maintain vapors in the housing.
- Rotate the high speed shaft slowly by hand, a minimum of eighty revolutions, at least once every four weeks.
- Inspect unit periodically and spray or add rust inhibitor suitable for anticipated storage conditions, as required.
- 6. Drain and replace with the recommended oil type prior to start-

Outdoor Storage

Note: OUTDOOR STORAGE IS NOT RECOMMENDED. When storage in a warehouse or enclosed building is not possible, however, the following should be observed:

- 1. Bring unit to an area in which the ambient temperature is greater than 50 °F and allow to stand for a minimum of 24 hours.
- Remove breather and replace with pipe plug. Seal the unit completely by sealing all air vents with pressure sensitive tape. Pack grease around the shafts near the contact seals and tape. Pack grease into the seal retainers and wrap tape against the seals.
- 3. Fill gear unit to half the recommended oil level with Shell VSI grade 68 oil or equal, heated between 110-120 °F. Immediately close openings to maintain vapors in the housing.
- 4. Coat the entire exterior with a rust preventative.
- Seal the unit in a moisture proof container with an adequate supply of desiccant inside to avoid moisture build-up. Unit must be elevated a minimum of six inches above the ground.
- The high speed shaft should be rotated slowly by hand, eighty revolutions, at least once every four weeks.
- Repeat operations 1,2,3, and 4 every six months. The Shell VSI Grade 68 Oil may be drained, reheated and reused.
- 8. Do not store the unit in direct sunlight.

INSTALLATION

The continuous efficient operation of a gear unit depends chiefly on four factors:

- 1. Proper type of foundation and correct mounting.
- 2. Correct alignment with the driven equipment.
- Correct lubrication.
- Full consideration of both preventative and operating maintenance.

CAUTION: Operate the gear unit only within the ratings shown on the nameplate. Review the application to confirm the unit will not be operated in conditions exceeding the nameplate rating. Selection and installation of guard, warning signs, or any provisions required to meet national and local safety codes are the responsibility of the user.

Environmental Considerations

Units should not be installed in locations of unusually high or low temperatures. Adequate air flow is required for proper heat dissipation from the unit. Ambient temperatures must not exceed 100 °F, unless supplemental means of cooling are supplied. Environmental conditions, including exposure to direct sunlight, high humidity, dust or chemicals suspended in the air are worthy of special consideration. Gear drives exposed to these and other adverse conditions should be referred to Nuttall Gear for special evaluation and recommendation.

Foundation

A foundation or mounting, which provides rigidity and prevents weaving or flexing with resultant misalignment of the shafts, is essential to the successful operation of a gear unit. A concrete foundation should be used whenever possible and should be carefully prepared to conform with data regarding bolt spacing and physical measurements contained in the Dimension Leaflet supplied prior to delivery of the equipment. Grout steel mounting pads into the concrete base. Mount the unit on these steel pads. Do not grout the unit directly into the concrete steel pads. Do not grout the unit directly into the concrete

foundation. When the units are installed on structural foundation pads a supporting base plate of steel should be provided to obtain proper rigidity. These plates or pads should be of a thickness equal to or greater than the diameter of the hold down bolts.

Foundation Bolt Torque Recommendations

Gear units must be securely bolted to their foundations with the specified bolt size. Bolts are to be SAE Grade 5 or equivalent fasteners. **Do not lubricate fasteners**. Tighten bolts per the torques listed below.

	Torque	e (Ft. Lbs.)		Torque	(Ft. Lbs.)
Bolt Size (UNC)	Metal To Metal	Metal To Concrete	Bolt Size (UNC)	Metal To Metal	Metal To Concrete
1/4	8	6	1-1/4	1,050	834
5/16	16	12	1-3/8	1,375	1,084
3/8	28	22	1-1/2	1,842	1,458
1/2	69	54	1-3/4	1,975	1,558
5/8	137	108	2	3,083	2,147
3/4	245	191	2-1/4	4,333	3,417
7/8	380	313	2-1/2	6,000	4,667
1	567	467	2-3/4	8,167	6,417
1-1/8	742	584	3	10,417	8,250

Bedplates

Bedplates are provided as common mounting surfaces which will support several components when mounted on a proper foundation. Bedplates are also designed to facilitate alignment of those Because of the disparity of component sizes, bedplates are not designed to be self-supporting structures under all conditions. They are not designed to provide a platform for lifting and transporting with all of the components mounted, unless the assemblies are properly supported and balanced with appropriate material handling fixtures. There will be occasions when it will be necessary to remove some components for transport, and subsequently, reassemble the drive train in its final location. Nuttall Gear supplies the components on the bedplate assemblies rough aligned to the coupling manufacturer's specifications. However, due to possible shifting in transit or handling and the possible variances in foundation surfaces, the final alignment is the responsibility of the installer. To align a bedplate supplied unit, the output shaft of the reducer should be aligned with the driven shaft by moving and shimming the bedplate assembly-not by moving the reducer on the bedplate. Insure that all bedplate mounting points are properly shimmed for proper support to provide a solid level surface. Failure to do so may create a twist in the bedplate and could make final alignment of the drive components difficult. After aligning the reducer output shaft and shimming between the bedplate and the foundation, the mounting bolts or lugs should be tightened and the bedplate firmly locked and grouted in place. Final alignment of the other bedplated components must now be completed.

Alignment

Gear units are designed with a tolerance of +0 and -1/16 in. between the shaft center and the base, therefore, shimming may be required. Flat shims of various thicknesses, slotted to slide around the foundation bolts, should be used. All feet must be solidly supported before the mounting bolts are tightened. After alignment

has been secured through shimming, the equipment should be bolted down and alignment rechecked. Heat up couplings, sprockets or pinions and shrink them onto shaft extensions when required, avoiding contact with the shaft seal. Do not heat parts above manufacturers recommended limits, or 300°F, whichever is lower. To avoid severe damage to bearing and gears the above must not be hammered on to shaft extensions. When the primemover is connected to the gear unit or the gear unit is connected to the driven equipment by means of a coupling, correct alignment cannot be overemphasized. This becomes of greater importance as speeds are increased or the drive is subjected to variations in load conditions. Misalignment, either parallel or angular, is one of the most frequent causes of bearing or shaft failures, noisy operation, or excessive operating temperatures due to the extra load imposed. A straight edge laid across the coupling member at the machined diameter provided for alignment purposes shows correct parallel alignment when the straight edge rests on both coupling members for their full length. Check this at four positions-90 degrees apart. The use of feeler gauges between coupling member faces is a common method of checking for correct angular alignment. Check at four positions-90 degrees apart. A more accurate alignment check is obtained by the use of dial indicators. This is done by clamping the indicator on one coupling member with the indicator stem resting on the other coupling member, then rotating the member holding the clamped indicator. To minimize overhung loads, pulleys and sprockets should be mounted as close to the gear case as possible. Tighten hardware for pulleys and sprockets in accordance with the manufacturers recommendations. Do not over tighten belts or chains. Reducer bearing life may be significantly reduced if belts and chains are too tight. Install pulleys and sprockets on driver/driven equipment so that they run true. Guards should be mounted over couplings, pulleys, and sprockets after final alignment is completed.

LUBRICATION

Warning: Gear units are shipped from the factory without oil. Fill unit to the proper level before operating.

Lubrication oil for use with gear units must be high quality, straight mineral petroleum oils. They must be non-corrosive to gears or bearings, neutral in reaction, free from grit or abrasives, and have good defoaming and oxidation resisting properties. Refer to AGMA 9005 for more detailed information on lubricant property requirements. Performance and life of the gear unit are dependent upon the use of the proper lubricants maintaining the correct oil level, and regular oil changes, including draining the unit at regular intervals, and flushing it, before refilling. For applications where

loads, speeds, or temperatures are abnormal, Nuttall should be contacted for specific recommendations.

Oil Sump Temperature

Gear drives operating in the ambient temperature range described in the table below generally produce oil sump temperatures of not more than 180°F. This sump temperature is considered maximum because lubricants begin to lose their lubrication properties as temperatures exceed 180°F. These lubrication recommendations exclude applications such as those gear drives installed in the food and drug industry where a possibility exists for incidental contact between the lubricant and the product being processed.

Lubricant Recommendations

Ambient Temperature Range*:			
-40°F to 0°F (-40°C to -20°C)	-20°F to +25°F (-30°C to -5°C)	15°F to 60°F (-10°C to +15°C)	50°F to 125°F (10°C to 50°C)
Contact factory	Use ISO VG 68 - 100 (AGMA 2	Use ISO VG 100 - 150 (AGMA	Use ISO VG 150 - 220 (AGMA
	- 3)	3 – 4)	4 – 5)

^{*}The ambient temperature range is defined as the air temperature in the immediate vicinity of the gear drive.

Lubricant Viscosity Ranges (for rust and oxidation inhibited gear oils)

ISO Viscosity Grade	AGMA Lubricant No.	CST Viscosity (mm²/s) at 40 °C	SSU Viscosity at 100 °F
VG 68	2	61.2 to 74.8	284 to 347
VG 100	3	90 to 110	417 to 510
VG 150	4	135 to 165	626 to 765
VG 220	5	198 to242	918 to 1122

Lubricant Brand Name Cross Reference

VG 68 (AGMA 2)	VG 100 (AGMA 3)	VG 150 (AGMA 4)	VG 220 (AGMA 5)
68	100	150	220
68	100	150	220
20	30	40	
			90
68	100	150	220
68	100	150	220
931	951	975	999
Heavy Medium	Heavy	Extra Heavy	BB
	68 68 20 68 68 931	68 100 68 100 20 30 68 100 68 100 931 951	68 100 150 68 100 150 20 30 40 68 100 150 68 100 150 931 951 975

Note: All oils listed are non-EP. EP gear lubricants in the corresponding viscosity grade may be used where the user believes he has continuous sustained heavy duty loading on his gear units. Consult a lube oil specialist. EP lubricants must not be used in backstops.

Oil Changes

Proper lubrication maintenance is vital to gear drive performance throughout its design life. After the first 500 hours or four weeks of operation, whichever occurs first, the gear drive should be thoroughly drained, flushed, and refilled with the proper lubricant. Under normal operating conditions, the lubricant should be changed every 2500 hours or six months, whichever occurs first. This change frequency can be extended if analysis of oil samples indicates very limited degradation or contamination.

Cleaning and Flushing

Ideally, the lubricant should be drained while the gear drive is at operating temperature. The gear drive should be cleaned with a flushing oil. Used lubricant and flushing oil should be completely removed for the system to avoid contaminating the new oil. The use of a solvent should be avoided unless the gear drive contains deposits of oxidized or contaminated lubricant which cannot be removed with a flushing oil. When persistent deposits necessitate the use of a solvent, a flushing oil should then be used to remove all traces of solvent for the system. The interior surfaces should be inspected where possible, and all traces of foreign material removed. The new charge of lubricant should be added and circulated to coat all internal parts.

Oil Filling Instructions

- Units with standpipes: Drain oil from unit. Remove breather.
 Remove pipe cap from stand pipe. Add oil through stand pipe until oil level is maintained at top edge of stand pipe. Replace breather and cap after filling.
- Units without stand pipes: Drain oil from unit. Remove breather. Remove pipe plug adjacent to oil level nameplate. Add oil through breather opening until oil starts to flow over edge of opening at oil level nameplate. Replace plug and breather.

CAUTION: Never attempt to add or replace oil while the unit is running. Do not fill beyond the indicated oil level. Excess lubrication increases the churning effect and may result in overheating and subsequent thinning of the oil and possible damage to the rotating components.

Cold Temperature Conditions

Lubrication, either by splash or pump, shall be given special attention if the gear drive is to be started or operated at temperatures below which the oil can be effectively splashed or pumped. Preheating the oil may be necessary under these low

ambient temperature conditions. Nuttall should be informed when gear drives are to operate outside the individual temperature ranges listed below. Gear drives operating in cold areas must be provided with oil that circulates freely and does not cause high starting torques. An acceptable low temperature gear oil in addition to meeting AGMA specifications, must have a pour point at least 5 °C (10°F) below the minimum expected ambient temperature and a viscosity which is low enough to allow the oil to flow freely at the start up temperature but high enough to carry the load at the operating temperature. When the lubricant selected does not provide proper lubrication for the expected ambient temperature range, the gear drive should be equipped with a sump heater to bring the oil up to a temperature at which it will circulate freely for The heater watt-density should be selected to avoid excessive localized heating which could result in rapid degradation of the lubricant.

Abnormal Operating Conditions

A rise and fall in temperature may produce condensation. Dust, dirt, chemical particles, or chemical fumes may also react with the lubricant resulting in the formation of sludge. Sustained sump temperatures in excess of 180 °F may result in accelerated degradation of the lubricant and excessive gear wear. When operating under these conditions the lubricant should be analyzed more frequently and changed when required.

Grease Lubrication of Seals and Bearings

On units supplied with special seals for hazardous dust conditions, fittings are provided for flushing away contaminated grease from seals. Grease should be applied at regular lubrication change periods or more frequently depending upon severity of dust. On some units, fittings are provided for grease lubrication of the input shaft outboard bearing. To lubricate, remove drain pipe plug on input bracket and add grease (with hand operated gun) to fitting on end cap until clean grease starts to flow from drain hole. Replace drain plug. A good grade of #2 bearing grease should be used for these applications and applied at regular lubrication change periods. On units supplied with internal backstops, fittings are provided for the input shaft outboard bearing and backstop. To lubricate, remove drain pipe plug on input bracket only and add grease (with hand operated gun) to fitting on end cap until clean grease starts to flow from drain hole on input bracket. Replace drain plug on input bracket. Remove drain pipe plug on end cap, and grease until grease starts to flow from drain hole on end cap. Replace drain plug. Socony Mobilux #2, Texaco Unitemp #2 or an equivalent

OIL CAPACITY

Approximate Oil Capacity in U.S. Gallons for Standard Floor Mounted Horizontal Units.

Unit Size	Single Reduction	Double Reduction	Triple Reduction	Quad Reduction
5 / 10	0.5	0.75	-	-
15 / 21	0.7	1.5	1.6	-
32	1.2	2.5	2.7	2.9
43	2.0	3.7	3.9	4.1
51 / 54	2.5	6.2	6.9	7.1
64	-	6.4	7.2	7.4
76	3.5	10.7	11.5	11.7
85 / 88	-	14.1	14.4	14.6
92	-	19.3	19.6	19.8
98	-	22.5	22.8	23.0

NOTE: All values are approximate. Always fill the unit to the level marked on the gear unit itself. Do not overfill.

START-UP

Pre-start For Units in Storage

- 1. Replace breather if removed during storage period.
- 2. Remove all tape applied in storage preparation.
- Drain all oils applied during storage; Shell VSI Grade 68 is soluble in recommended lubricating oils. Unit does not require flushing.
- Thoroughly inspect unit, sump, and all accessories for damage.
- 5. Follow additional start-up steps as outlined in this manual.

Start-up

Warning: Nuttall Gear units are shipped without oil. Prior to start-up, the unit must be filled with the proper amount of oil, selected in accordance with the operating conditions.

- Add the correct amount of oil to the gear unit. Fill to the top
 of the stand pipe when unit is at a standstill. Operate unit
 until oil fills all lines. Stop the unit and recheck oil level and
 add oil as required.
- Check that all electrical connections are made and in working order; and that all accessories are properly mounted.
- Check all external mounting bolts, screws, etc. to make sure they have not loosened in transit or handling.
- Check that all couplings, sprockets, pulleys, etc. are properly aligned, lubricated, mounted and keyed on shaft extensions.

- Check that inspection plug is securely tightened and install guards for rotating equipment.
- For units equipped with oil heaters in cold ambient temperature operation, turn the heater on and allow oil temperature to rise at least to 40 °F before start-up.
- Turn the shafts by hand to confirm there are no obstructions to rotation.
- 8. To avoid damage to the motor used with reducer having a built in backstop, break the high speed coupling connection, turn input shaft by hand to check proper rotation. Operate motor to check shaft rotation reversing leads if necessary to secure proper rotation. Reconnect coupling. Reducers will piggyback motors should be started very carefully with the output shaft coupling disconnected. If output shaft does not rotate, reverse motor direction and test. Reconnect the coupling.
- Start unit under as light a load as possible. If rotation of the unit is limited to one direction only, a tag on the housing indicates direction of rotation. Make certain that direction of shaft rotation is as shown on tag.
- 10. The machinery should be checked frequently for unusual sounds, oil leaks, excessive vibration and excessive heat. If an operating problem develops, shut down immediately and correct the problem before restarting. The operating temperature of the unit housing should normally not exceed 180°F.

TROUBLE SHOOTING

Operating Temperature

These gear drives are designed for a 100 °F rise in temperature over the ambient temperature, but not to exceed 180 °F. If the unit is operated in the sun at ambient temperatures exceeding a "hot" running unit, takes periodic measurements over a twenty-four hour period.

Noisy Unit

By nature, all gear units produce some kind of noise in operation, either a low pitch rumble or a high whine from the high speed mesh. Learn to distinguish between normal gear noise and symptomatic noises that could mean lack of oil, bearing trouble, or misalignment. Remember that sound is often amplified by the type of mounting or can be induced y coupled apparatus. A new gear unit may be initially noisy and then quiet down after a reasonable period of service; normal were has taken place, and teeth have established a well defined run-in-pattern. Other subtle changes can take place resulting in smoother, quieter operation. Always record changes in noise patterns of levels, as well as temperature changes.

Problem	Potential Causes
Excessive operating temperature	1, 2, 3, 4, 5, 6, 7, 9, 12, 18, 21, 22, 23
Oil leakage	1, 2, 3, 4, 5, 7, 9, 12, 13, 18, 19, 20, 22, 23
Gear wear	1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 23
Bearing failure	1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20

Shaft failure	1, 6, 7, 8, 9, 10, 11, 12, 15, 16, 20, 21, 23
Excessive noise	1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 21, 22, 23

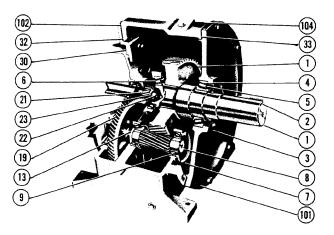
Pote	ential Cause	Action			
1.	Unit overload	Reduce the loading.			
2.	Incorrect Oil Level	Verify that the oil level is correct. Too little or too much oil can cause			
		high temperature.			
3.	Wrong Oil Grade	Use only the AGMA grade oil as specified for the unit size and			
	-	ambient temperature.			
4.	Contaminated oil	If oil is oxidized, dirty, or has high sludge content, change the oil.			
5.	Clogged breather	Clean breather regularly.			
6.	Improper bearing Adjustment	Too few or too many shims cause incorrect bearing clearance.			
		Contact the factory for correct end play, checking technique, and			
		tolerance. Shafts should turn freely when disconnected from the			
		load.			
7.	Improper coupling alignment	Disconnect couplings, check spacing between shafts, and check			
		alignment. Realign as required.			
8.	Incorrect coupling	Rigid couplings can cause shaft failure. Replace with a coupling that			
		provides flexibility and lateral play.			
9.	Excessive operating speed	Reduce the speed.			
10.	Torsional or lateral vibrations	Vibration can occur through a particular speed range known as the			
		critical speed. Contact the factory for specific recommendations.			
	Extreme repetitive shocks	Apply couplings capable of absorbing shocks.			
12.	Improper lubrication of bearings	Verify that all bearings are receiving adequate amounts of lubricating			
		oil, or grease.			
13.	Improper storage or prolonged shutdown	Destructive rusting of bearings and gears will be caused by storage			
		or prolonged shutdown in moist ambient temperatures. If rust is			
		found, unit must be disassembled, inspected and repaired.			
	Excessive backlash	Contact factory.			
	Misalignment of gears	Contact pattern to be a minimum of 75% of face.			
	Housing twisted or distorted	Verify proper shimming or stiffness of the foundation.			
	Gear tooth wear	Contact factory.			
	Open drains	Tighten drain plugs.			
	Worn oil seals	Check oil seals and replace if worn.			
	Loosely bolted covers	Check all bolted joints and tighten if necessary.			
21.	Motor related	Verify actual operating conditions are consistent with motor nameplate.			
00	Evenesive embient temperature	Shield unit from direct sunlight, and maintain proper air flow around			
22.	Excessive ambient temperature	the gear unit.			
00	Excessive overhung load	Move the pulley or sprocket closer to the housing. Check for			
23.	Excessive overnung load	excessive tension in belts or chains.			
		CAUCOSIVE ICHOICH III DEIG OF GHAIRS.			

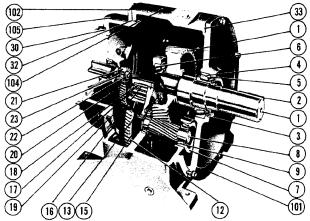
RENEWAL PARTS

This parts list provides information organized by unit. A cut-a-way view of the gear unit is shown with the parts individually identified by item number and description.

Instructions

In order to obtain renewal parts for your gear unit:


- Record all of the information off of the gear unit nameplate (refer to the illustration at the right).
- Refer to the correct illustrations and/or assembly drawing for the description of the required parts.
- 3. To order parts, contact your nearest Nuttall Gear Sales Office with the information you have assembled.


O SHOP ORDER NUMBER	c
CATALOG NO.	
SERVICE H.P.	RATIO:
SERVICE FACTOR	OUTPUT RPM
FIGURE NO:	
NuttailC	GearLLC
MADE IN U.S.A.	C

Integral Gearmotors (Type G)

Double Reduction Sizes 05D thru 98D

Triple Reduction Sizes 21T thru 98T

Part No.	Part Description	Part No.	Part Description
1 2 8	A. LOW SPEED COMPONENTS - Consists of: Low Speed Gear Set - Includes: (1) (2) L.S. Gear and Shaft Assembly L.S. Shaft Key L.S. Pinion Shaft	1 2 8	A.LOW SPEED COMPONENTS - Consists of: Low Speed Gear Set - Includes: ① ② L.S. Gear and Shaft Assembly L.S. Shaft Key L.S. Pinion Shaft
4 5 6	Low Speed Bearing Set - Includes: ① ② L.S. Shaft Outer Bearing L.S. Shaft Bearing Shims L.S. Shaft Inner Bearing	4 5 6	Low Speed Bearing Set - Includes: ① ② L.S. Shaft Outer Bearing L.S. Shaft Bearing Shims L.S. Shaft Inner Bearing
7 9 13	L.S. Pinion Shaft Bearing Retainer L.S. Pinion Shaft Bearings (1) (2) L.S. Pinion Shaft Locking Device	7 9 13	L.S. Pinion Shaft Bearing Retainer L.S. Pinion Shaft Bearings (1) (2) L.S. Pinion Shaft Locking Device
19 21	C. HIGH SPEED COMPONENTS - Consists of: High Speed Gear Set - includes ① ② H.S. Gear H.S. Pinion	12 15	B. INTERMEDIATE COMPONENTS - Consist of: Intermediate Gear Set - includes ① ② Intermediate Gear Intermediate Pinion Shaft
22 23	H.S. Pinion Shaft Nut H.S. Pinion Shaft Spacer	17 18	Intermediate Bearing Set - Includes ①②
3 30 32	D. OIL SEALS and GASKETS - Includes ① ② L.S. Shaft Oil Seal Motor Flange Gasket Adapter Gasket	16 20	Intermediate Pinion Shaft SpacerIntermediate Pinion Shaft Locking Device
101 102 104	L.S. Cover Gasket E. HOUSING PARTS Low Speed Cover Adapter (if required) Gear Housing	19 21 22	C. HIGH SPEED COMPONENTS - Consists of: High Speed Gear Set - Includes 1 2 H.S. Gear H.S. Pinion H.S. Pinion Shaft Nut
104	Geal Housing	23	H.S. Pinion Shaft Spacer
2 Orde Order In When on namepla		3 30 32 33	D. OIL SEALS and GASKETS - includes ① ② L.S. Shaft Oil Seal Motor Flange Gasket Adapter Gasket L.S. Cover Gasket
1. Style Number 2. Motor Frame (if needed) 3. Gear Box Size and Reduction Plus: Order by part number and description		101 102 104 105	E. HOUSING PARTS Low Speed Cover Adapter (if required) Gear Housing Triple Reduction Housing.

In-Line Speed Reducers (Type R) & All-Motor Gearmotors (Type U)

Part No.	Part Description	Part N o.	Part Description
1 2 8	A. LOW SPEED COMPONENTS - Consists of: Low Speed Gear Set - Includes:(2)(3) L.S. Gear and Shaft Assembly L.S. Shaft Key L.S. Pinion Shaft	1 2 8	A. LOW SPEED COMPONENTS - Consists of: Low Speed Gear Set - Includes: 2 3 L.S. Gear and Shaft Assembly L.S. Shaft Key L.S. Pinion Shaft
4 5 6	Low Speed Bearing Set - Includes: (2) (3) L.S. Shaft Outer Bearing L.S. Shaft Bearing Shims L.S. Shaft Inner Bearing	4 5 6	Low Speed Bearing Set - Includes: ②③ L.S. Shaft Outer Bearing L.S. Shaft Bearing Shims L.S. Shaft Inner Bearing
7 9	L.S. Pinion Shaft Bearing Retainer L.S. Pinion Shaft Bearings (2)(3)	7 9 13	L.S. Pinion Shaft Bearing Retainer L.S. Pinion Shaft Bearings ② ③ L.S. Pinion Shaft Locking Device
13	C. HIGH SPEED COMPONENTS - Consists of: High Speed Gear Set - includes ② ③	12 15	B. INTERMEDIATE COMPONENTS - Consists of: Intermediate Gear Set - includes 2 3
19 21 22	H.S. Gear H.S. Pinion H.S. Pinion Shaft Nut	17 18	Intermediate Bearing Set - Includes ② ③ Intermediate Bearings Intermediate Shims
23 24 29	H.S. Pinion Shaft SpacerH.S. ShaftH.S. Shaft	16 20	Intermediate Pinion Shaft SpacerIntermediate Pinion Shaft Locking Device
25 26	High Speed Bearing Set - includes: ② ③ H.S. Shaft Inner Bearing H.S. Shaft Outer Bearing	19 21	C. HIGH SPEED COMPONENTS - Consists of: High Speed Gear Set - Includes 2 3 H.S. Gear H.S. Pinion
27 3	H.S. Shaft Shims D. OIL SEALS and GASKETS - Includes ②③ L.S. Shaft Oil Seal	22 23 24 29	H.S. Pinion Shaft NutH.S. Pinion SpacerH.S. ShaftH.S. Shaft Key
28 30 33	H.S. Shaft Oil Seal H.S. Bracket Gasket L.S. Cover Gasket	25 26	HIgh Speed Bearing Set - includes: 2 3 H.S. Shaft Inner Bearing H.S. Shaft Outer Bearing H.S. Shaft Shims
(3) Or	E. HOUSING PARTS Low Speed Cover	27 3 28 30 32 32 33	D. OIL SEALS and GASKETS - includes 2 3 L.S. Shaft Oil Seal H.S. Shaft Oil Seal H.S. Bracket Gasket Triple Reduction Housing Gasket L.S. Cover Gasket
When name 1. St 2. Ge	ring Information I ordering renewal parts read the following from the plate: yle Number par Box Size and Reduction Order by part number and description	101 103 104 105	E. HOUSING PARTS Low Speed Cover High Speed Bracket Gear Housing Triple Reduction Housing

RATIO CHANGE

Ratio changes may be made without disconnecting the unit from the driven equipment. Increasing the Ratio in the change set raises the output torque and lowers the output RPM. Nuttall should be contacted to determine whether the unit has sufficient torque capacity at the new ratio. Decreasing the Ratio in the change set lowers the output torque and raises the output RPM. The prime mover and application should be checked since higher horsepower may require at the higher output RPM. Nuttall should be contacted if prime mover horsepower is to be increased. When ordering new gears for a ratio change, the complete nameplate data on the gear drive should be supplied for positive identification along with the desired ratio. In the majority of units a change in total ratio is accomplished by changing the ratio in only one set of gears. This set of "Change gears" has splined fits for ease of removal. The following procedure should be followed in changing ratios.

 Begin disassembly at the input shaft end by removing the hex head bolts that secure the input bracket.

Pry the input bracket off using a screw driver at the inset between the bracket and housing.

 Remove the input bracket revealing the high speed gear. If gasket is damaged, remove and clean surfaces.

 Lock the low speed shaft from rotating using a spanner wrench. Remove the hex bolt and washers that secure the high speed gear.

5. Pry the high speed gear off the splined shaft using a pry-bar.

The new high speed gear and spacer are now ready to be placed on the splined shaft.

 Place the original spacer and the new high speed gear on the splined shaft and secure with the hex bolt and its washers.

Shown here is the completed assembly with the new high speed gear.

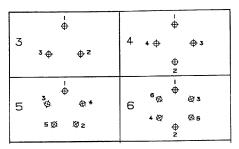
 The next step is to change the high speed pinion. Lock the high speed shaft from rotating using a spanner wrench. Remove the hex head nut that secures the high speed pinion.

10. Pry the high speed pinion off the splined shaft using a pry-bar.

11. The new high speed pinion is now ready to be placed on the splined shaft.

12. Place the new high speed pinion on the splined shaft and secure with the hex head nut. If the gasket was damaged, apply RTV to the clean surface in lieu of using a gasket.

13. Reassemble the input bracket to the housing and line up mounting holes. Be sure lube opening is in proper position (180° from application floor).


14. Change the nameplate to show the correct ratio, output RPM and reducer style number.

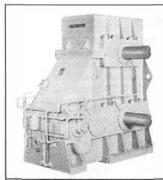
15. On Reducers 125 RPM out and faster, a standpipe must be installed to indicate the proper oil level. Remove the pipe plug at the base of the housing and install the standpipe.

FASTENERS

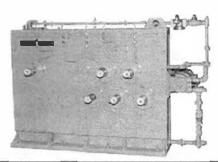
Fastener Tightening Sequence

3 ⊕ ⊗6 7 7 ⊕ ⊕4 ⊗ ⊗ ⊗ 2	6
3 0 86 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3

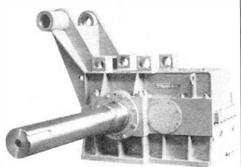
Grade 5 Fastener Tightening Torques

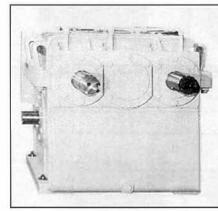

The following torque values are to be used for end covers, seal cages, shaft guards, inspection covers, and housing split line bolts, unless otherwise specified on the drawing or assembly instructions. Torque values for lubricated fasteners are to be used when fasteners are coated with thread locking compounds.

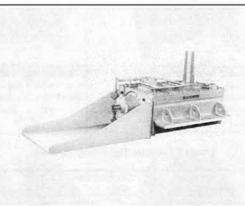
Diameter	Dry Fasten	Dry Fastener (foot-lbs)		Lubricated Fastener (foot-lbs)	
UNC	Min.	Max.	Min.	Max.	
1/4	7	8	4	5	
5/16	14	17	8	10	
3/8	25	31	15	19	
7/16	40	49	24	30	
1/2	60	75	36	45	
9/16	87	109	52	65	
5/8	120	150	72	90	
3/4	213	266	128	160	
7/8	344	430	206	258	
1	515	644	309	386	
1-1/8	635	794	381	476	
1-1/4	896	1,120	538	672	
1-3/8 ∂.	1,175	1,469	705	881	
1-1/2	1,560	1,949	936	1,170	
1-3/4	1,829	2,286	1,097	1,372	
2	2,750	3,438	1,650	2,063	
2-1/4	4,022	5,027	2,413	3,016	
2-1/2	5,500	6,875	3,300	4,125	
2-3/4	7,457	9,321	4,474	5,592	

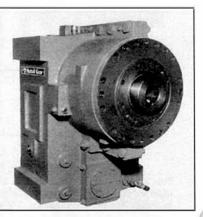

WEIGHT

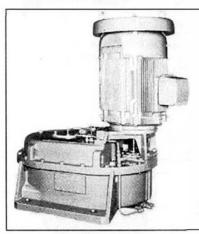
Approximate Unit Weight in Pounds

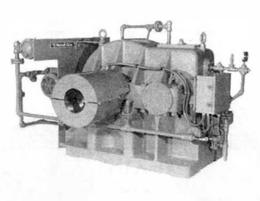

	(reducer only, no motor, motor support or accessories)			
Unit Size	Single	Double	Triple	Quad
5 / 10	70	77		
15 / 21	110	130	140	
32	180	165	190	210
43	200	270	290	300
51 / 54	350	490	500	570
64		550	620	700
76	350	770	800	825
85 / 88		1,237	1,340	1,435
92		1,300	1,450	1,570
98		2,350	2,400	2,570


Combination Reducer/ Pinion Stands are available in ratings up to 14000 HP and output speeds down to 1.7 RPM and in ratios up to 357:1.


Combination Reducer Levelers & Flatteners are available in ratings up to 300 HP and output speeds down to 2.4 RPM and in ratios up to 357:t.


Reel Units are available in single and multiple speed designs, in ratings up to 14000 HP and output speeds down to 2.4 RPM and in ratios up to 357:1.


Custom Engineered Drives are available in ratings up to 6,000,000 inch pounds of torque, designed for specific customer and/or application requirements.


Type DRV. TRV, ORV Right Angle Vertical Reducers are available in ratings up to 9000 HP and output speeds down to 2.4 RPM and in ratios up to 238:1.

DHE, DVE Extruder Drives are available in horizontal and vertical mountings, in ratings up to 3000 HP and output speeds down to 55 RPM and in ratios up to 21:1.

Veri-Dri, Vertical Reducers are available in ratings up to 14000 HP and output speeds down to 1.7 RPM and in ratios up to 357:1.

Type SU Speed Increasers and SD Speed Reducers are available in ratings up to 15000 HP and output speeds up to 15000 RPM and in ratios up to 9:1.

Type R, G, & U Concentric Shaft Reducers and Integral and Scoop Mount Gearmotors are available in ratings up to 200 HP and output speeds down to 1.5 RPM and in ratios up to 985-1

