MANY CUSTOMERS PUT THEIR TRUST IN STIEBER.

111111

STIEBER

Stieber was founded in Munich in 1937 and is now a medium-sized company employing 140 people at its locations in Heidelberg and Garching near Munich.

Our core business activity is the design and production of drive elements for mechanical engineering systems. Our major strength is the development and production of overrunning clutches and backstops, which transmit torque by means of friction.

Stieber can reflect on numerous innovative developments during the course of the company's history innovations that have made it the European market leader. Stieber proved its technical ability once again during the development and design of the largest backstop in the world, for example. This and other backstops are being successfully used even under the toughest of conditions.

Stieber, part of the Regal Rexnord is – together with its sister companies Formsprag and Marland in the USA – the world's market leader for overrunning clutches and backstops.

Our extensive world-wide service network including more than 1000 stocking distributors and technical centres ensures we are always close to the customers.

Our company philosophy is total customer satisfaction. To achieve this, our processes undergo continual refinement.

Stieber has been certified according to DIN EN ISO 9001 since 1997 and according to ISO 14001 (environment management system) since the year 2000. In addition, an internal monitoring process ensures that quality, timeliness and costs are always to the fore.

REGAL REXNORD

Regal Rexnord is a leading multinational designer, producer and marketer of a wide range of mechanical power transmission products. We sell our products in over 70 countries throughout the world. Our products are frequently used in critical applications, such as brakes for elevators, wheelchairs and forklifts, and in high-volume manufacturing processes, where the reliability and accuracy of our products are critical in both avoiding costly down time and enhancing the overall efficiency of manufacturing operations.

Visit us on the web WWW.STIEBERCLUTCH.COM

Conveyor Belts Coal Crushing Equipment Pumps Rolling Mills Seed Drilling Machines Rotary Furnaces Silos Ventilators Forming Machines Print Machinery Engine Test Benches Car Washing Systems Ball Presses Roller Costers Textile Machines High-Voltage Switchgear Fitness Equipment Winches Clay Pigeon Traps Automotive Industry Aerospace Power Station Technology

Overrunning Clutches and Backstops

Mounting instructions	12
Lubrication and maintenance	13
Products	14
Custom specific solutions	86
Alphabetical list	87
FSQ 300-700	56

FSU 300-700	30
FSO-GR 300-700	56
HPI 300-700	56
FS 750-1027	58
FSO 750-1027	58
HPI 750-1027	58
ALG	60
CEUS	62
BC MA	64
RDBR-E	66

	entrifugally t-Off Sprags Freewheels	
6	3	
Bu	ilt-in freewheels	
RS	CI 20-130	68
RS	CI 180-300	70
RS	XM	72
RS	RV	74
RS	RT	74
RE	BK	76

Self-contained Freewheels

RIZ-RINZ	78
RIZG1G2	80
RIZ G2G7	80
RINZG5G5	80
RIZG2G3	82
RIZG3G4	82
RIZELG2	84

IMPRINT

54

Published by: © Stieber GmbH Hatschekstraße 36 69126 Heidelberg Germany

This document must not be reprinted, duplicated or translated in full or in part without our prior written consent and without reference to the source of the material.

All content including pictures and diagrams is subject to alteration. We accept no liability.

Stieber – Competence is our strength	2
The principle	3
Design	5
Selection	6
Selection procedure	7
Selection table	10
Combined Bearing/Freewheel	

Combined Bearing/Freewheel

	Combined Bearing/Freewneel	
	14	
	CSK	14
	CSK2RS	14
	CSKP	16
	CSKPP CSKP-2RS	16 16
	ASK	18
	Built-In Freewheels	
	20	
2	AS	20
	ASNU	22
	AE	24
	AA NF	26 28
	INF	28
	DC	30
	DC-Races	32
	NFR	34
	10	
	Self-Contained Freewheels	-
	36	
	RSBW	36
	AV	38
	GFR	40
	GFRN GFRF1F2	40 42
	GFRF2F7	42 42
	GFRNF5F6	42
	GFRF2F3	44
	GFRF3F4	44
	AL ALP	46 46
	ALF2D2	48
	ALF4D2	48
	ALP. F7D7	50
	ALMPF7D7 ALKEED2	50 52

SMZ

1

The Company

STIEBER: COMPETENCE IS OUR STRENGTH.

INNOVATIVE: DEVELOPMENT

Throughout it's long history Stieber has been familiar with all types of freewheel designs such as roller and sprag variants and consistently led the way in developing new designs and technologies. We have an unmatched ability in the field of overrunning clutches, built on the long experience of our team of qualified engineers and always seeking the best answers in design and manufacture. Alongside a continuous program of product development unique solutions have been found over the years including:

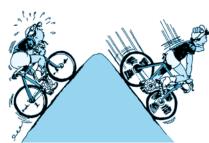
- Encased overrunning clutches lubricated and cooled by internal oil circulation without the need for a pump.
- Overrunning clutches that may be disengaged either manually or pneumatically.
- Irreversible locks. A novel adaptation of the freewheel principle

and more than 4,000 special designs developed for specific customer requirements. We can supply anything from 0.8 to 1.7 million Nm so you can be sure of finding the best solution, whatever the application.

ACCURATE: PRODUCTION

Standard products and customer-specific items are produced according to the latest techniques and quality requirements in our two manufacturing plants. Our skilled and experienced workforce take every care to deliver to you a reliable, quality product. Our commitment to continuous improvement ensures that our systems and processes are constantly under review. Over the past few years this has led to a 30% time saving in manufacture, for example. The assembly and warehouse departments control stock and material flow using a Kanban system to ensure the correct availability of standard parts and on-time delivery to you the customer. If you buy your freewheels from Stieber you can be sure of the best in quality and reliability for you and your customers guaranteed.

TRADEMARK: QUALITY


Total quality is assured both by meeting prescribed product performance specifications and thanks to the reliability of manufacturing methods and process workflows including integrated tests. The key technical data of Stieber products are either calculated using FVA* methods and/or verified on our test benches.

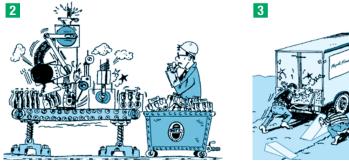
We have test machines with a torque capacity of up to 700.000 Nm. During idling, units with a bore up to 600 mm can be tested at speeds of up to 1.500 rpm. The modern equipment in our quality department allows us to carry out all the necessary tests ourselves.

* Power Transmission Research Association

THE PRINCIPLE: THE RIGHT ANSWER – EVERYTIME.

1

1 OVERRUNNING CLUTCH


The freewheel disengages automatically when the driven member rotates faster than the driving member.

2 INDEXING CLUTCH

The freewheel allows the conversion of reciprocating motion into a discontinuous rotational movement.

3 BACKSTOP

The freewheel allows rotation in one direction only. It overruns continuously during operation. The freewheel prevents reverse rotation if the drive is disconnected.

Overrunning clutches are directional couplings, which means they are engaged and disengaged automatically, depending on the relative direction of rotation of the driving and driven sides. Practical applications of this principle:

1 OVERRUNNING CLUTCH

for multiple-machine drives or to separate the inertia of masses of a driven machine from the driving machine after it has been switched off.

2 INDEXING CLUTCH

which turns a shaft step by step, thus achieving indexed material feed or a variable speed.

3 BACKSTOP

to prevent a machine shaft turning backwards. In this case the overrunning clutch acts as a brake.

The Company

ROLLER CLUTCH

Mainly used as overrunning

BASIC FORMS: ALWAYS A PERFECT SOLUTION.

To achieve the functions described overleaf, so-called locking elements are positioned between an outer and an inner race which effect engaging and disengaging. These locking elements are of two basic designs:

SPRAG CLUTCH

Most suitable as backstops, and

and indexing clutches. mostly the contact-free versions. **Outer Race Outer Race Inner Race Inner Race Locking Roller** Sprag Spring-Loaded Plunger Cage Rugged High overrunning speed Versatile High torque capacity High indexing accuracy • High eccentricity tolerances • High performance overrunning clutch Accepts any lubricant

We offer our freewheels in different versions either without bearing support (built-in) or with bearing support (self-contained). (see selection table page 10)

DESIGN: MANY VERSIONS – ONE QUALITY.

ROLLER FREEWHEELS

These freewheels feature a cylindrical outer race and an inner race consisting of ramps on which rollers are located. Springs and plungers ensure a permanent contact between the different elements for an instant torque transmission. This rugged, reliable versatile design can be used as an overrunning clutch, indexing clutch or backstop.

Note: the highest overrunning speed is possible if the outer race is overrunning. For this reason it is particularly adapted to high speed overrunning clutch application for dual drivers.

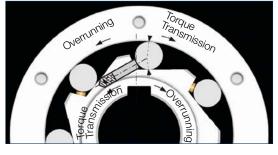
This design is recommended for use as an indexing clutch. To maximise accuracy, specify »V« type, fitted with stronger springs.

SPRAG FREEWHEELS

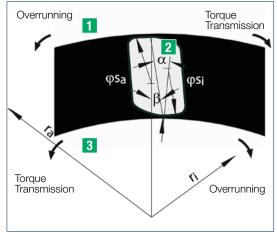
In this type of freewheel, the two races are cylindrical. The sprags, fitted in a cage, feature an active profile that ensures engagement or disengagement according to the relative motion of the races.

It is possible to adapt the design of sprags and cage to get significantly different characteristics from one model to another. For example, models which have permanent contact or are contact free during overrunning, are available.

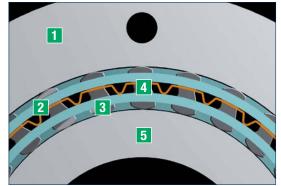
DC DESIGN


This model features a large number of sprags controlled by two concentric cages. The transmitted torque is high compared to the required space. Sprags are synchronised by the double cage design, and individually energized by a special spring.

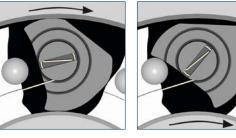
RSCI, RIZ DESIGN


Sprags in this design, are fitted into a cage connected to the overrunning member. The sprag configuration is such that its center of gravity is offset to its rotation axis.

Centrifugal force creates a lift off moment against an engaging spring. When the centrifugal force moment is greater than that of the spring, the sprag tilts over to a contact free position.


The clamping geometry allows this type of freewheel to accept significant eccentricity tolerances and to work with all the current lubricants used in power transmissions.

1 Outer race 2 Sprag 3 Inner race



1 Outer race 2 Cage 3 Spring 4 Sprag 5 Inner race

Torque transmission

Overrunning

Solutions

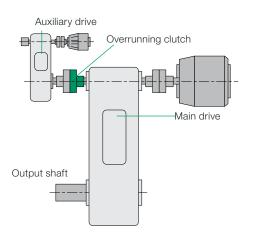
STIEBER SOLUTIONS: ALWAYS THE RIGHT CHOICE.

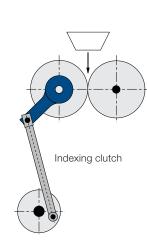
Unit selection is initially determined by the type of application: OC Overrunning clutch, IC Indexing clutch, BS Backstop. Different technical information is required for each one of them. Mounting details and lubrication requirements finally determine the unit selected.

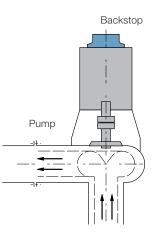
The information required for each type of application is as follows:

OVERRUNNING CLUTCH

- Type of motor
- Nm start/Nm nominal of E-motors
- Internal combustion engines, please consult Stieber
- Nominal driving torque
- Range of driving speed
- Inertia "J" of the driven masses
- Range of overrunning speed
- Number of start during service life
- Shaft diameter


INDEXING CLUTCH


- Number of cycles/min
- Index angle
- Nominal torque
- Inertia "J" of the driven masses
- Accelerations of the driving member
- Number of indexes during service life
- Shaft diameter



BACKSTOP

- Static reverse torque
- Maximum dynamic reverse torque due to elasticity of the locked parts (elastic belts, shafts more than 3 meters long)
- Range of overrunning speed
- Number of torque applications during service life
- Shaft diameter

THE SELECTION PROCEDURE: WE ADVISE, YOU DECIDE.

If we have the data described on the previous page, Stieber can make the most accurate selection. If all of the information is not available, or if you want to make a selection yourself, the following service factor procedure may be used.

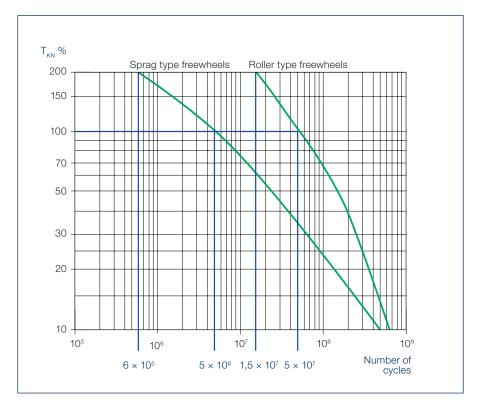
Note: The following method and the service factors used are only a guide based on experience and cannot cover all situations. We cannot accept responsibility for incorrect selection resulting from the use of these tables.

STEP 1 TORQUE SELECTION

The first step is to calculate the catalogue torque (T_{KN}) of the unit to be chosen. This torque is derived from the application nominal torque (T_{appl}) multiplied by a service factor (S.F.) depending on the function of the freewheel and working conditions.

Nominal torque of the application:

 $T_{appl}(Nm) = \frac{9550 \times P(kW)}{n(min^{-1})}$


The catalogue torque will be:

 $T_{KN} \ge T_{appl} \times SF$

Service factor (SF) can be read from the selection tables on page 8.

Note: All the units shown in this catalog can support a maximum torque equal to 2 times the catalogue torque T_{KN} indicated in the respective data tables.

The following curve may be used as a guide to determine the relationship between torque transmitted and the number of cycles (applications of this torque) the unit would withstand in its life time. Average values are shown.

Model Selection

SERVICE FACTORS.

APPLICATION INDEXING

Indexing speed	Type of freewheel			
	Roller type	Sprag type		
Over 150 strokes/min	3.0	4.0		
Angle > 90° Over 100 strokes/min	2.5	4.0		
Angle > 90° Less than 100 strokes/min	2.0	3.5		

APPLICATION BACKSTOP

Driving machine	Driven machine							
	Elastic conveyor belts	Pump drives with more	Fans	Other machines				
	with risk of jam	than 5 metres shaft	Falls	No overloads	Dynamic overloads			
Motors with hydraulic couplings	1.3	1.6	0.5	1.0	1.5			
Asynchronous motors with direct start ¹	1.6	1.6	0.5	1.0	1.5			
Steam or gas turbine	-	1.6	0.5	1.0	1.5			
Internal combustion engine	1.6	1.6	0.5	1.0	1.5			

1) These values do not cover a motor start in the wrong direction.

APPLICATION OVERRUNNING

Driving machine		Working conditions					
		Starting torque not higher than nominal Smooth drive.	Starting torque up to 2 times running torque. Moderate load variations.	Starting torque 2 to 3 times running torque. Load variations.	High starting torque. High load torque variations.		
DC - motor. AC - motor with soft start or hydraulic coupling		1.3	1.5	1.8	-		
Asynchronous motor with direct start	Speed reduction between motor & freewheel < 20	_	2.5	3.0	4.0		
	Speed reduction between motor & freewheel > 20	-	1.5	2.5	3.5		
Steam or gas turbine)	1.3	1.5 —		-		
Internal combustion	Petrol 4 cyl.or Diesel < 6 cyl.	4.0	5.0	Contact Stieber.	_		
Eninge	Diesel N 6 cyl.	5.0	6.0	Contact Stieber.	_		

Model Selection

STEP 2 MODEL SELECTION

When the catalogue torque is known, the model will be selected from the following criteria:

- Built-in or self-contained design
- Driving and overrunning speed limits
- Dimensions
- Lubrication and maintenance

Please refer to the selection table page 10 for a guide to selection. The product range is presented in this order:

SELF-CONTAINED BALL BEARING UNITS (CSK RANGE)

General purpose, economical units for light applications. Grease lubricated, maintenance free. With or without key(s) mounting to shaft and housing.

BUILT-IN UNITS

Made of inner- and outer race and clamping elements (sprags, rollers). Bearing support and lubrication must be provided.

SELF-CONTAINED UNITS

- Low speed, grease lubricated, maintenance free (RSBW, AV series).
- Medium overrunning speed inner race. High overrunning speed outer race. Roller types, oil lubricated (AL, GFR series).

- High overrunning speed inner race. Medium overrunning speed outer race. Sprag types, oil or grease lubricated (SMZ, FS, FSO series).
- High speed, high power, for continuous duty encased overrunning clutches (AL..G, CEUS.., BC..MA series).

CENTRIFUGAL LIFT OFF SPRAG TYPES

Special overrunning clutches and backstops contact free during overrunning. Please be aware of the speeds permissible in driving and overrunning modes.

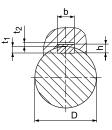
- Built-in units: Low lubrication requirement. Accept a large range of lubricants (RSCI series).
- Self-contained units: Grease lubricated, long life and maintenance free (RIZ series).

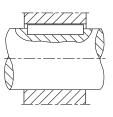
Selection Table

Types	Applications groups	Type of support		戀		
			00	IC	BS	
CSK			٠	•	•	
CSK2RS	Integral bearing/		•	•	•	
CSKP. CSKPP	Integral bearing/ freewheel based on	Bearing support		•	•	
CSKP-2RS	series 62 and 60		•	•	•	
ASK			ullet		•	
AS (NSS)			•	•	•	
ASNU (NFS)				•	•	
AE			•	•	•	
AA	Built-in freewheels:		•	•	•	
NF	Must be integrated in a housing that provides	No bearing support	•	•	•	
DC	bearing support and		•	•	•	
DC Races	lubrication. Low to medium torque and speeds.		•	•	•	
NFR		Bearing support	•	•	•	
RSBW					•	
AV				•	•	
GFR-GFRN						
GFRF1F2/F2F7				•	•	
GFRNF5F6					•	
GFRF2F3					•	
GFRF3F4					•	
AL/ALP	-		•	•	•	
ALF2D2				•	•	
ALF4D2	Self-contained clutches:			•	•	
ALPF7D7	Sealed, with integral lubrication. From small				•	
ALKEED2	to high torques. low to	Bearing support		<u> </u>		
SMZ	max speeds. Applications in all types				•	
FSO 300-700	of industry.				•	
FSO 750-1027					•	
ALG	-					
CEUS			•			
BC MA					•	
RDBR-E					•	
RSCI 20-130			•		•	
RSCI 180-300			•		•	
RSXM			•		•	
RSRV	Centrifugally lift off	No bearing support			•	
RSRT	sprags:				•	
RDBK	Wear free above a given speed. High speeds with little lubrication demand.				•	
RDBK-H	little lubrication demand.				•	
RIZ-RINZ	Specifically designed for: gear reducers, motors,		•		•	
RIZG1G2/G2G7	pumps, ventilators,				•	
RINZG5G5	turbines.		•		•	
RIZG2G3		Bearing support			•	
RIZG3G4					•	
RIZELG2			-			1

OC = Overrunning Clutch | IC = Indexing Clutch | BS = Backstop | • = Special Working Conditions

Selection Table


Bore range- diameter	Torque range	Overruning Speed inner race	Overrunning Speed outer race	Lubrication	Page
mm	Nm				
8–40	2,5–325				14
8–40	2,5–325				14
12–40	9,3–325	(H)		GREASE	16
12–40	9,3–325				16
40-60	72–250				18
6–80	2,1–1063				20
8–200	12-44500				22
12–70	17–5813	(M)	(H)		24
12–250	17-225000				26
8–150	20-44375				28
15–80	63-4875			OIL	30
			M		32
8–130	20-34750	M	(H)		34
20–90	375–4875				36
20–120	265-11000	S	not possible	GREASE	38
12–150	55-70000				40
12–150	55-70000		(H)		42
12–150	55-70000				42
12–150	55-70000	1			44
12–150	55-70000		not possible		44
12–250	55-287 500	- <u>(M)</u>		OIL	46
12–250	55-287 500				48
12–250	55-287 500		(H)		50
12–250	55-287 500				50
12–250	55-250000				52
20–70	300-4300				56
12–82	379-6900	(H)	(H)	OIL GREASE	56
57–177	9660-36612				58
38–160	500-70000				60
40–180	680-81 350	not possible	H		62
165–600	36000-1626000	Ś	not possible	OIL	64
150–320	50000-330000				66
20–130	212–15750				68
180–300	31 500-250 000				70
20–70	100–1950				72
50–190	1400-30 000	(H)	not possible	OIL GREASE	74
50–190	1400–30 000				74
60-300	5500-180 000				76
60-300	5500-180 000				76
30–130	375–23 000				78
30–130	375–23 000				80
30–130	375–23 000			GREASE	80
30–130	375–23 000		not possible		82
30–130	375–23 000				82
30–130	375–23 000				84


Mounting

MOUNTING INSTRUCTIONS: SO THAT IT FITS.

KEY ASSEMBLIES

For all freewheel inner races connected to shaft by a key, our standard bore tolerance is H7, with keyway to JS10. If no other indication we recommend a shaft tolerance of h6 or j6. For maximum indexing accuracy, adjusted keys should be machined to give no clearance.

	DIN 6885* Sheet 1			D	IN 688	6885* Sheet 3		
Bore size	b ^{JS 10}	h	t,	t ₂	b ^{JS 10}	h	t,	t ₂
> 6-8	2 ± 0.020	2	1.2 + 0.1	1 + 0.3				
> 8-10	3 ± 0.020	3	1.8 + 0.1	1.4 + 0.3				
> 10-12	4 ± 0.024	4	2.5 + 0.1	1.8 + 0.3				
> 12–17	5 ± 0.024	5	3 + 0.1	2.3 + 0.3	5 ± 0.024	3	1.9 + 0.1	1.2 + 0.3
> 17-22	6 ± 0.024	6	3.5 + 0.1	2.8 + 0.3	6 ± 0.024	4	2.5 + 0.1	1.6 + 0.3
> 22-30	8 ± 0.029	7	4 + 0.2	3.3 + 0.4	8 ± 0.029	5	3.1 + 0.1	2 + 0.3
> 30-38	10 ± 0.029	8	5 + 0.2	3.3 + 0.4	10 ± 0.029	6	3.7 + 0.2	2.4 + 0.3
> 38-44	12 ± 0.035	8	5 + 0.2	3.3 + 0.4	12 ± 0.035	6	3.9 + 0.2	2.2 + 0.3
> 44-50	14 ± 0.035	9	5.5 + 0.2	3.8 + 0.4	14 ± 0.035	6	4 + 0.2	2.1 + 0.3
> 50-58	16 ± 0.035	10	6 + 0.2	4.3 + 0.4	16 ± 0.035	7	4.7 + 0.2	2.4 + 0.3
> 58-65	18 ± 0.035	11	7 + 0.2	4.4 + 0.4	18 ± 0.035	7	4.8 + 0.2	2.3 + 0.3
> 65-75	20 ± 0.042	12	7.5 + 0.2	4.9 + 0.4	20 ± 0.042	8	5.4 + 0.2	2.7 + 0.3
> 75-85	22 ± 0.042	14	9 + 0.2	5.4 + 0.4	22 ± 0.042	9	6 + 0.2	3.1 + 0.4
> 85-95	25 ± 0.042	14	9 + 0.2	5.4 + 0.4	25 ± 0.042	9	6.2 + 0.2	2.9 + 0.4
> 95-110	28 ± 0.042	16	10 + 0.2	6.4 + 0.4	28 ± 0.042	10	6.9 + 0.2	3.2 + 0.4
> 110-130	32 ± 0.050	18	11 + 0.3	7.4 + 0.4	32 ± 0.050	11	7.6 + 0.2	3.5 + 0.4
> 130-150	36 ± 0.050	20	12 + 0.3	8.4 + 0.4	36 ± 0.050	12	8.3 + 0.2	3.8 + 0.4
> 150-170	40 ± 0.050	22	13 + 0.3	9.4 + 0.4				
> 170-200	45 ± 0.050	25	15 + 0.3	10.4 + 0.4	1			
> 200-230	50 ± 0.050	28	17 + 0.3	11.4 + 0.4]			
> 230-260	56 ± 0.060	32	20 + 0.3	12.4 + 0.4	*) Keyway tolerances for hardene parts are not given in DIN6885.			
> 260-290	63 ± 0.060	32	20 + 0.3	12.4 + 0.4				
> 290-330	70 ± 0.060	36	22 + 0.3	14.4 + 0.4				

PRESS FIT ASSEMBLIES

Shaft and bore tolerances are specified on the pages for each type where press fitting is appropriate.

As with standard bearings, suitable tooling must be used for press fitting such that no axial load is transmitted through the inner part of the freewheel during assembly.

BOLT ASSEMBLIES

In freewheel technology torque is often transmitted through bolts. Experience has shown that it is a practical and reliable way since freewheels transmit torque in only one direction.

Bolt quality and tightening torques to use are as follows:

	Strength standard						
Thread	8.8		10.9				
Inread	Туре	[Nm]	Туре	[Nm]			
M5		6	AA AL FSO	8			
M6		10		14			
M8		25		34			
M10		48		68			
M12	RSCI	84	GFB	118			
M16		206		290			
M20		402	HPI	550			
M24		696	RIZ	950			
M30		1420		1900			

RUN-OUT

Permitted run-out tolerances for the mounting of non self supported roller freewheels AA, AE, AS, ASNU, KI and NF (see table on the bottom right).

In order to maintain these limits, ball bearings with standard clearance must be installed adjacent to the freewheel. The permitted run-out for sprag type freewheels DC, RSCI and S200 are given in their respective tables.

Bores-diameter [mm]	AA, AE, AS, ASNU, KI, NF			
Dores-utameter [mm]	Runout TIR	Squareness TIR		
4-8	0.020	0.02		
10–17	0.035	0.03		
20-50	0.060	0.03		
55-100	0.100	0.03		
110-150	0.160	0.03		

Lubrication and Maintenance

LUBRICATION & MAINTENANCE: NOW LET'S LOOK AFTER IT.

Oil	Operating -20°C to +20°C Ambient -40°C to -15°C	Operating +10°C to +50°C Ambient -15°C to +15°C	Operating +25°C to +60°C Ambient +5°C to +25°C	Operating +40°C to +70°C Ambient +15°C to +30°C	Operating +50°C to +85°C Ambient +30°C to +50°C	Grease
DIN ISO 3448 mm²/s	10	22	32	46	100	
	SUMOROL	SUMOROL	SUMOROL CM 32	SUMUROL CM 46	DEGOL CL 100 T	ARALUB
ARAL	CM10	CM22	MOTANOL HE 32	MOTANOL HE 46	MOTANOL HE 100	HL2
bp	ENERGOL	ENERGOL	ENERGOL CS 32	ENERGOL CS 46	ENERGOL CS 100	ENERGREASE
	CS10	CS22	ENERGOL RC-R-32	ENERGOL RC-R 46	ENERGOL RC 100	LS2
Castrol	-	-	AIRCOL	AIRCOL	AIRCOL	SPHEEROL
			PD 32	PD 46	PD 100	MP 2
(Seco)	SPINESSO	SPINESSO	TERESSTIC	TERESSTIC	NUTO	UNIREX
6550	10	22	T 32	T46	100	N2
	RENOLIN	RENOLIN	RENOLIN	RENOLIN	RENOLIN	RENOLIT
FUCHS	MR3	MR5	MR 10	MR15	MR30	LZR2
	ISOFLEX	ISOFLEX	LAMORA	LAMORA	LAMORA	POLYLUB WH2
LUBRICATION	PDP 38	PDP 48	HLP 32	HLP 46	100	Klübersynth BM 44-42
Mobil	VELOCITE	VELOCITE	MOBIL	MOBIL	MOBIL DTE	POLYREX
	No 6	No 10	DTE 732	DTE 798	OIL HEAVY	EM
	MORLINA	MORLINA	MORLINA	MORLINA	MORLINA	GADUS
	S2 BL 10	S2 BL 22	S2 B 32	S2 B 46	S2 B 100	S2 V100 2
	AZZOLA	AZZOLA	AZZOLA	AZZOLA	AZZOLA	MULTIS 2
TOTAL	ZS10	ZS22	ZS 32	ZS46	ZS100	

Alternatively we strongly recommend the use of multigrade oil SAE 10W-40 at working temperature between 0°C and +80°C.

OIL

The oil lubricated freewheels from this catalog are delivered lubricated with a VG 32 oil viscosity if they are sealed, self-contained units (except ALP..F7D7, GFRN.. F5F6 and GFR..F3F4).

Other freewheels are delivered without lubricant, other than a protection against corrosion. Before putting a unit into operation, it is necessary to remove the anti corrosive fluid and to fill the unit with appropriate oil.

Generally, for a horizontally mounted unit, the correct oil level is 1/3 of the internal clutch height unless specified. (For vertically mounted units please contact us). Correct lubricants to use are given in the lubrication chart.

Oils including graphite, molybdenum and EP additives should be avoided. This chart is for guidance only. In the case of low or high overrunning speeds, or limiting temperatures, please contact our technical department.

Initially change the oil after 10 hours of operation. Afterwards change lubricant every 2000 hours and every 1000 hours in a dirty environment. Oil level and oil condition as well as rotating seals should be checked regularly. For working temperatures below -40°C and above +100°C, please contact us. If grease lubrication is the only option for one of these types, we recommend you contact our technical department for approval.

GREASE

A number of models have been designed specially for grease lubrication as standard (see page 10–11). In this case, the unit will always be delivered lubricated, ready for mounting either in horizontal or vertical position. The grease used is a long life type, with high thermal and chemical stability.

Unless specified, no maintenance is required. To increase the service life of units we recommend to remove, clean, inspect and re-grease them after two years of operation.

Note: Unlike all other designs, sprag types RSCI and DC version-N can work with all the current lubricants used in power transmissions.