Energy Efficient Geared Motors AC Line Operated

Gear Motor Selection

Selection of geared motors	
Drive configuration	
Drive configuration General	
Required data for drive configuration	
Determining the motor power	
Determining the required torque	
Determining the gear reduction ratio	
Determining the factor of inertia	
Drive configuration	40
Determining the shock load	
Determining the minimum service factor f _{Bmin}	40
Brake specification	40
Torque-speed characteristic	41
Motor configuration	42
Dynamic power	
Static power	
Total power P _G	
Motor selection	43
IE2	43
IE1	
No-load cycle rate Z_0	
Load factor K_{L}	
Radial and axial forces on the output shaft	45
Radial and axial forces on the output shaft	45
Maximum allowable radial force at force application point X	
Bearing load limit	45
Shaft strength	
Helical gear unit BG series	
Shaft-mounted gear unit BF series	
Bevel gear unit BK series	
Worm gear unit BS series	
Transmission components	
Factor f_z for the type of transmission component	
Axial force	
Sizing based on efficiency	50
Drive configuration based on efficiency	
Savings potential Motor: η_{motor}	
Calculation of the efficiency under partial load	
Gear efficiency $\eta_{\mbox{\tiny gear}}$	51
System efficiency η_{system}	51
Shock loads of machinery	

Energy Efficient Geared Motors AC Line Operated

Bauer Gear Motor GmbH Eberhard-Bauer-Str. 37 73734 Esslingen +49 (0) 711 3518-0 www.bauergears.com

Information		
Company:		
Contact person:		
Phone:		
Email:		

Questionnaire for geared motor selection

Gearbox type

Helical gears

Number of items: Country of operation: **Technical Data** Output shaft speed n2:

Torque M2:

Operation

or

time:

Daily operating

Operation Duty:

Output shaft design

Mounting position

□ Solid shaft on side V/H/VH:

□ Special shaft dimensions (DxL),

□ Hollow shaft with keyway

□ Foot with clearance hole

 \Box Foot with tapped holes

□ Torque arm with rubber buffers

IP prot. type per EN 60034: □ IP54

Mounting (acc. to page. 2 - H1, H2, V1, V2, etc.):

Terminal box position (acc. to page. 3): □ I □ II □ II □ IV

Motor power:

Efficiency class:

With pole-changing:

Service factor required: min

Number of switching per hour: rating \Box 8 hour

🗆 S1

□ Light shock load

rpm

Nm

kW

_x ___mm

□ IP65

from

Type of loads (conveyor, mixer, crusher, centrifuge, etc.):

max

□ 16 hour

□ Second shaft end on motor (DxL), x mm □ Second shaft end on motor with square shaft (ZV)

□ A-Flange

□ Foot plate

□ Medium shock load

□S2 min

□ Shrink disk

□ C-Flange with tapped holes

□ IP66 □ IP67

□ Outdoor installation

□ BK Bevel gears

Voltage:

Connection:

Frequency:

□ Solid shaft without parallel key

□ Hollow Shaft for shrink disk

Temperature class: 🗆 B

□ Frequency inverter duty Frequency range: _____

□ BS Worm gears

ΠY

V

ΠН

Ηz

Duty =

□ bottom

□ top

□ right

□ Other (sketch attached)

□ Splined Shaft acc. to DIN 5480

 $\Box \bigtriangleup$

 \Box F

□ 50 Hz □ 60 Hz

□ 24 hour

□ other S

□ rear

□ front

Painting

🗆 IP69K

°C

□ other RAL

□ Standard RAL 7031

□ Corrosive environment:

Relative humidity:

🗆 left

□ Second shaft end on motor with parallel key (ZW)

□ IP68

°C to +

□ Heavy shock load

%

HiflexStandardStainless

	2	1
		ľ

nt temperature range:
nt temperature range:

Environment

other:

Motor Accessories

□ Indoor installation

Notor Accessories	,			
Brake voltage:	V	Required braking torque:	Nm	□ Manual brake release
Backstop:	🗆 left 🗆 right	□ Brake wear/function monitoring		□ Brake heater
□ Thermistor motor	protection	□ Thermostats motor protection		□ Anticondensation heater (Motor)
Temperatursensor	r KTY	Temperatursensor PT100		
Encoder type		No. of pulse:		Supply voltage \Box HTL \ \Box TTL
🗆 Rain cover		Forced ventilation		

%

Drive configuration

Drive configuration General	Motions are necessa products. Geared mo ment. The objective of tion.	ry in production plants and equipment for the man otors are used to implement these motions in statior of drive configuration is to obtain the optimal moto	ufacture of goods and hary production equip- r for each type of mo-
	Motions in machines the necessary motior	and equipment vary considerably. Experienced den ns to a few standard types:	sign engineers reduce
	 continuous linear reciprocating line horizontal linear r vertical or oblique continuous rotary 	motion ar motion notion e linear motion for lifting and lowering loads / motion and reciprocating rotary motion	
	All motions can be di	vided into:	
	 an acceleration p a constant-veloci a braking (decele 	hase ity phase ration) phase	
	These motion phases ne the phase with the system can be select See our separate "De	s must be examined separately when sizing a drive e highest load. After the maximum load has been d ted. esign Guide" publication for assistance with various	, in order to determi- etermined, the drive use cases.
Required data for drive configuration	In addition to the dat drive configuration:	a on (Specification of geared motors), the following	data is necessary for
	Designation	Description	Unit
	Z	Cycle rate	[1/h]
	t _d	Operating time per day	[h]
	t _a	Deceleration time	[S]
	n ₂	Output speed	[rpm]
	n	Rated rotor shaft speed	[rpm]

t _a	Deceleration time	[s]
n ₂	Output speed	[rpm]
n	Rated rotor shaft speed	[rpm]
J	Moment of inertia	[kgm ²]
J _{ext}	External moment of inertia	[kgm ²]
J _{ext}	External moment of inertia	[kgm ²]
	referred to the rotor shaft	
J _{rot}	Rotor moment of inertia	[kgm ²]
F	Force	[N]
m	Mass	[kg]
V	Velocity	[m/s]
а	Acceleration	[m/s ²]
g	Earth gravitational constant	[m/s ²]
P _{dyn}	Dynamic power	[kW]
Ps	Static power	[kW]
Р	Power	[kW]
M ₂	Output torque	[Nm]
M _{2erf}	Required drive torque	[Nm]
M _N	Rated torque at rotor shaft	[Nm]
Ma	Deceleration torque	[Nm]
ML	Braking or driving load torque	[Nm]
M _{gr}	Specific limiting torque of gearbox at gear ratio i	[Nm]
M _{Br}	Rated braking torque	[Nm]
i	Gear reduction ratio	
FI	Inertia ratio	

Drive configuration process

Motor configuration

Determining the motor power

The required power can generally be calculated as follows:

$$\mathsf{P} = \frac{\mathsf{F} \times \mathsf{v}}{\mathsf{n}}$$

As previously described, all motions are divided into an acceleration phase (dynamic power), a constant-velocity phase (static power), and a braking (deceleration) phase.

Depending on the type of motion, the force F necessary to overcome all opposing forces such as rolling friction, linear friction, gravitational force, acceleration and so on arising from the drive train has a strong influence on the required power and must be determined explicitly for each use case.

See Section 15 for assistance in selecting the right motor power.

Determining the required torque After

After the motor power has been determined, the required gearbox output torque can be calculated with:

$$M_2 = \frac{P \times 9550}{n_2}$$

Determining the gear reduction ratio

The gear reduction ratio is the ratio of the rated speed of the motor (see the motor data in Section 15) to the desired output speed of the geared motor.

$$i = \frac{n}{n_2}$$

Gearbox size selection

Determining the factor of inertia

The inertia ratio is the ratio of the sum of the moments of inertia of all masses driven by the motor and converted to the motor speed, including the moment of inertia of the motor rotor, to the moment of inertia of the rotor:

$$FI = \frac{J_{ext'} + J_{rot}}{J_{rot}} \qquad \text{where} \qquad J_{ext'} = \frac{J_{ext}}{i^2}$$

Gear Motor Selection Drive configuration

Determining the shock load	The shock load (see Sections 6, 7, 8 and 9) is determined from the inertia factor, the type of transmission component and the relative moment of acceleration.
Determining the minimum service factor \mathbf{f}_{Bmin}	Based on the operating time per day, the cycle rate and the ascertained shock load, the service factor f_{Bmin} can be taken from the tables in Sections 6, 7, 8 and 9.
	Based on this minimum service factor f_{Bmin} , select a geared motor from the tables that has a higher service factor as well as the required output speed, output torque and motor power.
	Note: The service factor relates solely to the required torque for static operation needed by the application, which should be covered by the output torque of the selected geared motor. The dynamic portion is not taken into consideration here.
	The actual service factor of the geared motor with regard to required torque for static opera- tion can therefore be calculated as follows:

$$f_{_B} = \frac{M_{_{gr}}}{M_{_{2erf}}}$$

The final step is to specify the accessory options for the geared motor.

Essentially it is necessary to determine, based on the amount of friction energy to be dissipated by the brake, whether the brake is a holding brake or a service brake. See Section 16 for the definitions of holding brakes and service brakes.

Once all the necessary data and requirements are known, the required braking torque can be calculated as follows:

$$M_{br} = M_{a} \pm M_{L}$$
$$M_{a} = \frac{J \times n}{9,55 \times t_{a}}$$

If the specific application data is not known, for horizontally driven equipment we recommend selecting a braking torque that is 1.0 to 1.5 times the rated torque of the motor.

In the case of applications with significant external moments of inertia (FI greater than 2) and with operating cycles per hour, the brake size must always be selected on the basis of the thermally allowable braking energy. See Section 16 for detailed information on brake configuration.

In the case of lifting equipment, for safety reasons a braking torque twice as large as the rated torque of the motor should always be selected.

Brake specification

Gear Motor Selection Drive configuration

Torque-speed characteristic

The torque versus speed curve shows the operating characteristics of the asynchronous motor. The reference points shown schematically on the torque versus speed curve are significant criteria for motor selection.

The **starting torque MA** with the rotor stationary, which is also called the locked-rotor torque, determines the acceleration of the equipment or system. If the motor is powered directly from the mains, bear in mind that the starting torque, usually listed in the motor data tables in the form of the ratio M_A/M_N , is a fixed and unalterable quantity. This means that the desired acceleration can only be approximated when the motor is operated directly from the mains. Operation from a frequency converter is discussed separately.

The **pull-up torque MS** is the least amount of torque developed by the motor while it is coming up to speed. It must always be greater than the effective load torque at the time when the pull-up torque occurs, as otherwise it will not be possible to accelerate the drive.

The **breakdown torque MK** is the maximum torque the motor is capable of producing. If the load increases above the rated torque M_n , the slip s increases, the speed n decreases, and the motor delivers more torque. This can rise to a maximum level M_K . After this point the motor stalls, which means that it suddenly stops running at this slip value (breakdown slip). If the breakdown torque is exceeded, either the load must be removed or the motor must be switched off immediately. Otherwise the motor will be destroyed as a result of overheating.

The **rated torque MN** is the torque available in continuous operation at the rated power P_N and rated speed n_N .

Gear Motor Selection

Motor configuration

Dynamic power

The dynamic power is the power that accelerates the entire system, which consists of the load, transmission components, gearbox and motor.

$$\begin{array}{ll} P_{dyn} = \displaystyle \frac{m \times a \times v}{\eta} \\ P_{dyn} & Dynamic \ power \ [W] \\ m & Mass \ [kg] \\ a & Acceleration \ [m/s^2] \\ v & Velocity \ [m/s] \end{array}$$

n Efficiency

Static power

The static power includes all forces present under zero-acceleration conditions. This includes rolling friction, linear friction, lifting force (with lifting) and wind force, among others.

$$\mathsf{P}_{\mathsf{s}} = \frac{\mathsf{F}_{\mathsf{F}} \times \mathsf{v}}{\eta}$$

 $\begin{array}{lll} {\mathsf P}_{\mathsf S} & & {\text{Static power [W]}} \\ {\mathsf F}_{\mathsf F} & & {\text{Travel resistance [N]}} \end{array}$

Total power P_G

 $P_{G} = P_{dyn} + P_{S}$ $P_{G} = \frac{m \times a \times v}{\eta} + \frac{F_{F} \times v}{\eta}$

Gear Motor Selection Motor configuration

Motor selection

Example:

Required dynamic torque at motor (for acceleration):	126 Nm
Required static torque at motor	70.0 Nm
Total torque at motor:	196 Nm

IE2

P _N	Туре	n _N	M _N	I _N	cos φ	η	η	η	I_A/I_N	$M_{\text{A}}/M_{\text{N}}$	$M_{\rm S}\!/M_{\rm N}$	$M_{\rm K}/M_{\rm N}$	J _{rot}
				400 V		(100% load)	(75% load)	(50% load)					
[kW]		[rpm]	[Nm]	[A]		[%]	[%]	[%]					[kgm ²]
7.5	DHE13LA4	1460	49	15.1	0.81	88.9	89.2	87.9	7.0	3.3	3.0	3.5	0.0345
9.5	DHE16MB4	1470	62	19.7	0.78	89.4	89.4	86.5	6.8	2.9	2.5	3.2	0.057
11	DHE16LB4	1470	71	22.5	0.78	90.3	90.0	88.3	7.9	3.5	2.9	3.8	0.076
15	DHE16XB4	1470	97	31	0.77	90.6	90.8	88.8	7.2	3.2	2.8	3.5	0.087
18.5	DHE18LB4	1470	120	35	0.83	91.5	91.7	90.0	7.9	3.6	3.0	3.3	0.160

IE1													
P _N	Туре	n _N	M _N	I _N	cos φ	η	η	η	I _A /I _N	M_A/M_N	$M_{\rm S}/M_{\rm N}$	M _K /M _N	J _{rot}
				400 V		(100% load)	(75% load)	(50% load)					
[kW]		[rpm]	[Nm]	[A]		[%]	[%]	[%]					[kgm ²]
7.5	DSE13MA4	1440	50	15.3	0.81	87.5	87.8	87.1	6.2	2.8	2.5	3.2	0.02900
9.5	DSE13LA4	1440	63	19.2	0.82	87.1	87.5	87.5	6.0	2.9	2.6	3.0	0.03450
11	DSE16MB4	1460	72	22.6	0.81	87.7	88.0	87.3	6.0	2.5	2.1	2.7	0.05700
15	DSE16LB4	1460	98	29.5	0.83	88.9	89.2	88.9	6.1	2.5	2.1	2.8	0.07600
18.5	DSE16XB4	1460	121	37.5	0.81	89.3	89.9	88.5	6.1	2.6	2.2	2.8	0.08700

No-load cycle rate Z₀

If the cycle rate is greater than normal (typically around 60 cycles per hour), the additional thermal load and, depending on the type of power transmission, the additional mechanical load must be taken into account in motor selection.

The no-load cycle rate Z_0 is the number of start cycles per hour with the motor running under no load (no external moments of inertia) in which the allowable winding temperature for the insulating material class F is reached.

No-load cycle rate Z₀:

	7	
4		

PN	Туре	Z0
[kW]		[c/h]
0.12	DPE05LA4	65000
0.12	DPE06LA4	65000
0.18	DPE07LA4	47000
0.25	DPE08MA4	36000
0.37	DPE08LA4	27000
0.55	DPE08XA4	19000
0.75	DPE09LA4	15000
1.1	DPE09XA4	11000
1.5	DPE09XA4C	8700
2.2	DPE11MA4	6400
3	DPE11LA4	5000
4	DPE11LA4C	4000
5.5	DPE13LA4	3100
7.5	DPE13XA4	2400
9.5	DPE16LB4	2000
11	DPE16LB4	1800
15	DPE16XB4	1400
18.5	DPE18LB4	1200
22	DPE18XB4	1000

As a result of external loads, the no-load cycle rate is reduced to the allowable service cycle rate. The effect of the load is expressed by the inertia ratio FI and the load factor K_L .

Load factor $\mathbf{K}_{\scriptscriptstyle L}$

The load factor reflects the relative load P/PN and the duty cycle of the motor in operation between the cycles.

The relative load has a quadratic effect on the allowable cycle rate. The effect of the duty cycle depends on the circumstances. With little or no load, the stress on the motor decreases due to the relatively long cooling periods, while at rated load or heavy loading the stress on the motor increases due to load losses.

The load factor K_L for 4-pole motors is determined as follows:

$$\begin{split} K_{L100} &= \ 1 - \left(\begin{array}{c} P \\ P_n \end{array} \right)^{1,5} \\ K_{L} &= \ 0,35 + (K_{L100} - 0,25) \times ED \end{split}$$

Radial and axial forces on the output shaft

For each geared motor with a solid shaft, the allowable radial force $F_{\text{R}(N,M)}$ referred to the centre of the output shaft, x = l/2, is listed in the selection tables. The listed data applies to both foot-mounted and flange-mounted versions. If the force application point F_{X} is off centre, the allowable radial force must be recalculated taking into account the bearing lifetime and the shaft strength.

Maximum allowable radial force at force application point X

 F_A Axial force [N]

To evaluate the radial force present at the force application point X, the allowable radial forces at position X must be determined with respect to the load limits of the bearings and the shaft strength.

If the calculated allowable radial forces at the force application point X are greater than the radial force that is present, the gearbox may be selected for the application. If the calculated values are not sufficient or the force application point X is not within the stub shaft length I, please consult us.

Bearing load limit

$$F_{XL1} = F_q \times \frac{0,5+b}{\left(\frac{X}{1}+b\right)}$$
$$F_{XL2} = F_q \times \frac{0,5+a}{\left(\frac{X}{1}+a\right)}$$

Gear Motor Selection Radial and axial forces on the output shaft

Shaft strength

$$F_{XW1} = F_{qmax} \times \frac{0,5}{\left(\frac{X}{l}\right)}$$
$$F_{XW2} = F_{qmax} \times \frac{0,5+c}{\left(\frac{X}{l}+c\right)}$$

For the selected gear ratio and bearing type (normal or reinforced), F_q is the allowable perpendicular force F_{RN} or F_{RV} from the geared motor selection tables.

 F_{qmax} is the maximum allowable perpendicular force for the selected gearbox size as listed in the geared motor selection tables, independent of the bearing type (normal or reinforced).

The factors a, b and c for the individual gearbox types are listed in the following tables.

Taille	Paliers	Arbre	1	а	b	С
		Code				
BG04	normaux	1	24	0.5625	1.5000	-
BG05	normaux	1	28	0.5893	1.3929	-
BG06	normaux	1	30	0.6667	1.4167	-
PC10	pormouly	1	10	0.7125	1.6750	-
BGTU	nonnaux	7	40	1.1000	2.0625	-
PC20	pormouly	1	50	0.6100	2.2500	-
BG20	nonnaux	7	50	0.9400	2.5800	-
PC20	pormouly	1	60	0.5917	2.1750	-
DG30	nonnaux	7	00	0.9417	2.5250	-
BG40	normaux	1	60	0.6917	2.3667	-
		7	00	1.0083	2.6833	-
PC50	BG50 normaux		00	0.5625	2.0000	-
BGSU			00	0.8563	2.2938	-
PC60	pormouly	1	100	0.5300	2.0200	-
BGOU	nonnaux	7	100	0.7650	2.2550	-
PC70	pormouly	1	100	0.4750	1.7292	-
BG/U	nonnaux	7	120	0.7292	1.9833	-
PC90	pormouly	1	140	0.4286	1.7000	-
DGOU	nonnaux	7	140	0.6000	1.8714	-
PC00	pormouly	1	200	0.3675	1.5300	-
BG90	normaux	7	200	0.5825	1.7450	-
BC100	normaliy	1	220	0.3477	1.4341	-
BGTUU	normaux	7	220	0.5386	1.6250	-

Helical gear unit BG series

Gear Motor Selection Radial and axial forces on the output shaft

eries	Frame size	Bearings	Output shaft	I	а	b	С
			code				
	BF06	normal	1	50	0.4500	1.4100	-
		normal	1	60	0.5083	1.4833	-
	DITO	normai	2	00	0.6500	1.6250	-
	DEOO	pormal	1	70	0.4286	1.3571	-
	BF20	normai	2	10	0.5571	1.4857	-
	PE20	pormal	1	00	0.3875	1.2563	-
	DF3U	normai	2		0.5688	1.4375	-
BF40 BF50 BF60	normal	1	100	0.4050	1.2250	-	
	normai	2	100	0.5250	1.3450	-	
		1	100	0.3125	1.0625	-	
	normai	2	120	0.3959	1.1458	-	
		1		0.3286	1.0821	-	
	DECO	normai	2	140	0.4036	1.1571	-
	rainforced	1	140	-	-	0.2750	
		reiniorcea	2		-	-	0.3643
		normal	1		0.2722	1.0566	-
	DE20	normai	2	100	0.3056	1.0889	-
	DFIU	uninformed	1	100	-	-	0.2194
		reiniorcea	2]	-	-	0.2639
			1		0.2878	1.3536	-
	DEOO	normai	2		0.2873	1.3518	-
	BF80	uninformed	1	220	-	-	0.2364
		reiniorcea	2]	-	-	0.2268
		normal	1		0.2500	1.4231	-
	REOO	normai	2	060	0.2500	1.4231	-
	BLAO	rainforced	1	200	-	-	0.2027
		reiniorced	2		-	-	0.1950

Shaft-mounted gear unit BF series

Gear Motor Selection Radial and axial forces on the output shaft

Bevel	gear	unit	BK	series
-------	------	------	----	--------

Frame size	Bearings	Output shaft code	I	а	b	С
		1		0.4375	1.9875	-
D I (2.2		2	1	0.4375	1.9875	-
BK06	normal	7	- 50	0.9125	2.4625	-
		8	1	0.9125	2.4625	-
		1	00	0.5917	2.2417	-
BK10	normal	2	60	0.5917	2.2417	-
		1		0.5071	2.2357	-
DKOO	normai	2		0.5071	2.2357	-
BK20	reinforced	1	70	-	-	0.3929
	reiniorcea	2	1	-	-	0.3929
		1		0.5250	2.2750	-
DKOO	normai	2		0.5250	2.2750	-
DNJU	rainforced	1	00	-	-	0.4125
	reiniorceu	2		-	-	0.4125
BK40	pormal	1		0.4300	2.1700	-
	normai	2	100	0.4300	2.1700	-
	reinforced -	1	100	-	-	0.3400
		2		-	-	0.3400
	normal - reinforced -	1		0.4083	1.9417	-
RK50		2	120	0.4083	1.417	-
BNJU		1	120	-	-	0.3250
		2		-	-	0.3250
	normal -	1		0.3536	1.8036	-
BK60		2	140	0.3536	1.0836	-
DROU	reinforced	1	140	-	-	0.3121
	Tell lioi Ceu	2		-	-	0.2979
	normal	1		0.2861	1.6694	-
BK70	поппа	2	180	0.2861	1.6694	-
BILIO	reinforced	1		-	-	0.2428
	Territoreed	2		-	-	0.2317
	normal	1		0.2818	1.5545	-
BK80	normai	2	220	0.2818	1.5545	-
BIX00	reinforced	1		-	-	0.2305
	Territoreed	2		-	-	0.2214
	normal	1		0.2519	1.6096	-
BK90		2	260	0.2519	1.6096	-
DIVOO	reinforced	1		-	-	0.1989
		2		-	-	0.1912

Frame size	Bearings	Output shaft		а	b	С
		code				
		1		0.6000	2.1000	-
BCOO	normal	2	20	-	-	-
D302	normai	7	30	1.3333	2.8333	-
		8		-	-	-
BS03		1		0.4375	1.9875	-
	normal	2	10	-	-	-
	normai	7	40	0.9125	2.4625	-
		8		-	-	-
D004	normal	1	10	0.5375	1.7875	-
D304		2	40	-	-	-
D000 rearrand		1	50	0.4800	1.9400	-
D200	normai	2	50	-	-	-
D010	normal	1	60	0.5917	2.3083	-
D310	normai	2	00	-	-	-
B600	normal	1	70	0.5500	2.4357	-
D320	normai	2	10	-	-	-
D000	normal	1	00	0.5312	2.4313	-
B230	normal	2	00	-	-	-
P\$40	normal	1	120	0.4292	1.7042	-
D340	normal	2	120	-	-	-

Worm gear unit BS series

Transmission components

If a transmission component is used (gearwheels, chainwheels, V-belt, etc.), the resulting radial forces can be determined as follows.

$$F_{_{R}}= \ \frac{2000 \times M}{D_{_{T}}} \ \times f_{_{Z}} \leq F_{_{R(N,\,V)}}$$

F_R Radial force [N]

M Torque [Nm]

 D_T Pitch radius of the transmission component [mm]

fz Safety factor

A safety factor f_Z depending on the type of transmission component attached to the output shaft must be included when determining the value of the radial force F_R that is present.

Factor $f_{\scriptscriptstyle {\rm Z}}$ for the type of transmission component

Transmission	Safety factor fz	Note
component		
Gearwheel	1	=> 17 teeth
Gearwheel	1,15	< 17 teeth
Chainwheel	1	=> 17 teeth
Chainwheel	1,25	< 17 teeth
Toothed rack	1,15	< 17 teeth (pinion)
V-belt	22,5	From tensioning force
Flat belt	23	From tensioning force
Friction wheel	34	

Axial force

The following specification applies to the allowable axial force F_A on the output shaft (either tension or compression) for all Bauer geared motors and for foot, flange or hollow-shaft versions:

 $F = 0.5 \times F$ Please consult us in case of larger axial forces.

Gear Motor Selection

Sizing based on efficiency

Drive configuration based on efficiency	With the IEC 60034-30-1 standard and the ErP 2009/125/EC EU directive, utilisation of the potential energy savings in industrial environments has been given increased urgency and made legally mandatory. In the industrial applications area, electric motors consume the vast majority of electrical energy (approximately 70 %). They are used in all areas and in many applications, such as fans, pumps, grinders, rolling mills, lifts, transport and conveying equipment, household appliances, and office machines. Due to this broad range of applications, electrical drive systems are a primary target for energy saving policies. As electric motors consume a large amount of electrical energy, even small improvements in efficiency lead to significant savings. In many cases, especially in transport and conveying equipment, it is necessary to reduce the speed of a three-phase squirrel-cage motor. This can be done by using external traction gearboxes or by using external or integrated reduction gearboxes. With regard to energy savings, the efficiency of the gear unit and transmission components must not be ignored.
	The overall efficiency of a system is calculated as follows:
	$\eta_{\text{Installation}} = \eta_{\text{Motor}} \times \eta_{\text{Reducer}} \times \eta_{\text{Machine}}$
Savings potential Motor: η_{motor}	In accordance with the Motor Regulation 16640/2009/EC, the legally binding EU ErP directive 2009/125/EC specifies IE3 (Premium Efficiency) as the minimum efficiency for new motors operating in continuous running duty (S1) \geq 0,75 kW, effective 1. January 2017.
	The right motor frame size and motor type should be selected based on environmental and economical aspects based on the new motor regulations for the IE3 series.
	The new Regulation (EU) 2019/1781 extends the scope of the affected motors in the perfor- mance and product spectrum and sets new binding implementation dates of 1 July 2021 and 1 July 2023.
Calculation of the efficiency under partial load	The motor data sheets list motor efficiency figures according to Motor Regulation (EU) 2019/1781 for operation at several load levels (50 %, 75 % and 100 %). The efficiency at any partial load point can be calculated approximately from the efficiency figures for 75 % and 100 % load, and the energy balance of the application can be evaluated accordingly.
	$R_{VL} = \frac{\left[\frac{100}{\eta_{100}} - 1\right] - 0.75 \times \left[\frac{100}{\eta_{75}} - 1\right]}{0.4375}$ $R_{VO} = \left[\frac{100}{\eta_{100}} - 1\right] - R_{VL}$
	$\eta_{P} = \frac{100}{\left[1 + \frac{R_{VO}}{p}\right] + R_{VL} \times p}$
	with \mathfrak{p}_{100} Efficiency at 100 % load \mathfrak{p}_{75} Efficiency at 75 % load \mathfrak{RVL} , RVOIntermediate resultspPartial load (value range: 0 to 1 or overload)

pPartial load (value range: 0 to 1 ornpEfficiency at partial load point p

Gear Motor Selection Sizing based on efficiency

Gear efficiency η_{gear}

Comparison of the general savings potential of gearboxes and motors in continuous running duty (S1) shows that the energy savings potential of gearboxes is significantly higher than that of motors. The efficiency of gearboxes is predominantly dependent on the tooth geometry and the friction values of the bearings and seals. At high input speeds and with vertical designs in which the first stage rotates fully immersed in oil, splash losses cannot be neglected. Vertical designs should generally be avoided.

The efficiency of worm gear drives is highly speed dependent (see illustration). Bauer worm gear units are available as two-stage worm gear units for frame sizes BS04 and larger. This enables very high reduction ratios and significantly higher efficiency than with pure worm gear units. A loss of 2 % per stage can be assumed for two-stage worm gear units.

Comparison of typical efficiency (η) versus reduction ratio (i) for helical spur gear units (H) with two, three or four stages and two-stage worm gear units (S), relative to the rated power of the gear unit.

The drive system provides the highest savings potential in the analysis of the overall efficiency. Designers and plant engineers should always strive to optimise the transmission components.

Transmission component	Conditions	Efficiency
Wire rope	Per full turn on the wire drum (with journal or roller bearings)	0.91–0.95
V-belt	Per full turn on the belt pulley (with normal belt tension)	0.88–0.93
Synthetic belts	For each full turn or roll, with roller bearings (normal belt tension)	0.81–0.85
Rubber belts	For each full turn or roll, with roller bearings (normal belt tension)	0.81–0.85
Toothed belts	For each full turn or roll, with roller bearings (normal belt tension)	0.90–0.96
Chains	For each full turn or chainwheel, with roller bearings (depending on chain size)	0.90–0.96
Spindles	Trapezoid-thread spindle Ballscrew spindle	0.30 – 0.70 0.70 – 0.95
Gear unit	With spur gears or bevel gears: 2 % per stage, with worm gears and other types of toothing, according to manufacturer's data	0.94–0.98

System efficiency η_{system}

P-7112-BGM-EN-A4 05/24

Gear Motor Selection

Shock loads of machinery

Shock loads for various types of machinery are listed in standards and guidelines as well as industry-specific documents and manufacturer's documents. If for example a crusher or a press is listed here with an shock load class of III, this is justified. On the other hand, under favourable conditions a belt conveyor could have an shock load class of I, but this could quickly change to III with on/off operation, high speed and overdrive due to a loose chain.

Consequently, the classifications in the following table should by no means be taken blindly. They provide a rough point of reference, but the ultimate classification of the shock load should always take into account the factors specified by Bauer, in particular the inertia ratio, the cycle rate and the transmission component(s).

Drive		Shock loa	d	Drive		Shock load
Construction machinen				B H L		
Construction lifts		1		Rubber Extrudoro		
Concrete mixers				Calandera	+	11
Boad construction machinery				Knoadors	+	
			L	Mixero		11
Chemical industry				Bolling mills	+	11
		1			+	
Mixers				Timber processing and woodworking		
Stirrers (light media)				Debarking drums	+	
Stirrers (viscous media)				Planare	-	1
Drving drums				Woodworking machinery		
Centrifuges (light)				Saw frames	· ·	
Centrifuges (heavy)						
		1		Crane systems		
Transport and conveying systems					+	
Hauling winches				Traversing mechanisms	· · ·	
Conveying machines				Hoisting mechanisms	<u> </u>	
Apron conveyors		1		Slewing mechanisms		
Belt conveyors (bulk material)				Jib mechanisms	-	
Belt conveyors (piece goods)						
Bucket belt conveyors				Plastics		
Chain conveyors				Extruders	+	
Circular conveyors				Calenders		
Freight lifts				Mixers	+	
Flour bucket conveyors				Grinders and pulverisers	-	
Passenger lifts		1			-	
Flat belts				Metalworking		
Screw conveyors		11		Plate bending machines		
Gravel bucket conveyors		11		Plate straightening machines	-	
Inclined lifts				Hammers	-	
Steel belt conveyors		11		Planers		
Chain conveyors		1		Presses	-	
				Shears		
Blowers and fans				Forging presses	+	
Roots blowers				Punches	1	
Blowers (axial and radial)	1			Countershafts and driveshafts	1	
Cooling tower fans		11		Machine tools (principal)	1	
Suction blowers				Machine tools (ancillary)	1	

Ш

|||

|||

Ш

Gear Motor Selection Shock loads of machinery

Drive	Shock load			Drive	Shock load		
Food processing				Rolling mills			
Filling machines	1			Plate shears			111
Kneading machines				Plate turners		11	
Mashing machines		11		Billet presses			111
Packaging machines	1			Billet and slab lines			111
Sugar cane cutters		11		Billet conveyors			111
Sugar cane mills			III	Wire drawing machines		11	
Sugar beet cutters		11		Descaling machines			111
Sugar beet washers		II		Sheet metal mills			Ш
				Plate mills			111
Paper				Winders (strip and wire)		11	
Couching			III	Cold rolling mills			III
Smoothing rolls			Ш	Chain transports		11	
Hollander				Billet shears			111
Pulp grinder			Ш	Cooling beds		11	
Calender				Cross transports		11	
Wet presses			Ш	Roller tables (light)		11	
Shredders			III	Roller tables (heavy)			III
Suction presses			III	Roll straighteners		Ш	
Suction rolls			III	Tube welders			111
Drying rolls			III	Trimming shears		Ш	
				Cropping shears			111
Stone and soil				Continuous casting machines			Ш
Crushers			Ш	Roll adjustment devices		Ш	
Rotary kilns				Manipulators			Ш
Hammer mills			Ш				
Tube mills				Laundry			
Beating mills			Ш	Drum dryers		Ш	
Tile and block presses			Ш	Washing machines		11	
						•	
Fabrics				Water treatment			
Winders		11		Centrifugal aerators		II	
Printing and dying machines				Archimedes screw		Ш	
Tanning vats		11					
Shredders							
Looms		11					

Energy Efficient Geared Motors AC Line Operated