Superior Torque Control for Heavy Duty Diesel Engines Wichita has instituted quality assurance procedures aimed at achieving the ultimate in product reliability and its Power Take-Offs represent industry's most advanced PTO design. Two mechanically activated PTO's are now available in addition to the performance-proven Air Tube Disc Clutch PTO's. Complete clutch engagement of the mechanical PTO units is assured with each release of the hand lever due to the incorporation of a heavy-duty Fuller® "Solo" truck clutch. With its many outstanding features, the Fuller clutch used in the Wichita PTO prevents torsional vibration from damaging engine or transmission components, or causing spline wear. The result is superior Power Take-Off performance and durability! # Mechanical Power Take-Off Clutches duty models ## **Typical Applications** The In-line PTO design provides direct drive operation with side load capability. It has an automatic self-adjusting feature and does not require a pilot bearing. Other features such as standard SAE flywheel mounting, interchangeable clutch and clutch housing, constant plate load and easy maintenance add up to superior performance. Wichita 15-1/2" mechanical PTO provides long service life for Cummins 855 diesel on rock crusher. Side Load PTO's utilize a pair of heavyduty roller bearings fitted in to the shaft housing. The bearing support system eliminates the transmission of side loads that could reduce durability or even damage the engine's crankshaft. Its torque capacities range up to 420 HP @ 2100 RPM. Wichita mechanical PTO handles shock and heavy loads for wood chippers. Air-Tube Disc Power Take-Off Clutches provide dependable troublefree performance on indirect drives with large overhung loads on engines of 250-700 HP. The Wichita design isolates the side load from the engine's crankshaft for long service life. Simple air controls can be utilized to remotely control the clutch as well as the throttle. Wichita PTO's have been successfully used for oil field, construction and marine applications. Wichita PTO mounted on Caterpillar diesel engine. P-1100-WC 8/22 www.wichitaclutch.com 145 ## **Mechanical Design** #### **Design Features** - Side Load version incorporates a rugged cylindrical roller bearing system which eliminates trouble-prone pilot bearings. Provides 100% external support of take-off shaft. Prevents transmission of side loads that fatigue or even damage the engine crankshaft. - Precise alignment capabilities of the bearing system ensure flywheel/clutch concentricity to minimize effects of diesel engine torsional vibration. - Performance-proven Fuller Solo Spring clutch provides easy engagement. Axial load is provided by three pairs of springs placed at an angle to the clutch centerline, - reducing required axial force as the clutch is disengaged. The discs are raced with trapezoidal ceramic buttons, and are dampened with an assembly of coaxial springs mounted in the disc hub. - Dampened clutch discs prevent torsional vibrations from damaging engine or components. - Available in 2 sizes, from 14" to 15 1/2" for engines up to 420 HP @ 2100 RPM. 146 www.wichitaclutch.com P-1100-WC 8/22 # **Mechanical In-line PTO (Truck Flywheel)** Size 14" Flat, 14" Pot & 15-1/2" Flat #### **Dimensions: inches** | | | A | | | | | | |--------------|----------|-----------------|-------------|------------|------|-----------------|------| | Clutch | SAE Bell | Pilot | В | C | | E | | | Size | Housing | (+.000/002) in. | Hole Circle | Plate Dia. | D | Hole Size – Qty | F | | 14" Flat | 1 | 16.50* | 15.500 | 13.56 | N/A | 13/32 8 | 2.62 | | 14" Pot | 1 | 14.750 | 15.500 | 13.75 | 2.94 | 13/32 8 | 2.50 | | 15-1/2" Flat | 1 | 17.155 | 16.625 | 15.22 | 0.19 | 15/32 8 | 2.50 | $[\]ensuremath{^{\star}}$ Nominal diameter only, clutch is not piloted. #### Caution: Do not use with Drive Line Center of gravity is 242 lbs. located 3.50" from bell housing mounting surface #### **Estimated Side Load Calculation** #1 L = $$\frac{126,000 \times HP}{N \times D}$$ x F x SF #2 L = $$\frac{1,945,000 \times kW}{N \times D} \times F \times SF$$ L = Actual Applied Load (lbs. for #1 and kgs for #2) N = Shaft Speed (RPM) D = Pitch Diameter (in. for #1 and mm for #2) of Sheave F = Load Factor 1.0 for Chain Drive or Gear Drive 1.5 for Timing Belts 2.5 for All V-belts 3.5 for All Flat Belts SF = Service Factor 2.1 for Reciprocating Compressors and other severe shock drives 1.8 for Large Inertia Drives such as Crushers, Chippers, and Planers Note: It is recommended that the optional support plate be used in side load applications. # Allowable Side Load (lbs.) at 1,800 RPM | X | Side Load | |---------------|------------------------| | Distance from | (lbs.) B ₁₀ | | Bell Housing | Bearing Life | | 3.62 | 1,600 | | 4.62 | 1,100 | | 5.62 | 850 | | 6.62 | 680 | | 7.62 | 565 | | 8.62 | 450 | | 9.62 | 400 | | 10.26 | 370 | | 11.25 | 340 | At 2,100 RPM, derate side load by 20%. # **Mechanical Side Load PTO (Truck Flywheel)** Size 15-1/2" Flat | Clutch
Size | | Engine Manufacturers
Common Truck Flywheels* | | | | | | | |----------------|------------------|---|--------------------|--|--|--|--|--| | | Caterpiller | Cummins | Detroit | | | | | | | 14" Pot | | FW1101 | 5129650
5101878 | | | | | | | 15-1/2" Flat | 9N3136
4W6800 | FW1134 | 5138863 | | | | | | ^{*} Check with engine manufacturer for flywheel compatibility. ## **Engine Flywheel Housing SAE Standards** | SAE | | | Bolt Circle | | Ta _l | pped | |------|---------------|--------|--------------------|---------|-----------------|---------| | Size | Α | В | C | D | Н | oles | | No. | in. | in. | in. | in. | No. | Size | | 00 | 31.000/31.010 | 34-3/4 | 33-1/2 | 3-15/16 | 16 | 1/2-13 | | 0 | 25.500/25.510 | 28 | 26-3/4 | 3-15/16 | 16 | 1/2-13 | | 1/2 | 23.000/23.008 | 25-1/2 | 24-3/8 | 3-15/16 | 12 | 1/2-13 | | 1 | 20.125/20.130 | 21-3/4 | 20-7/8 | 3-15/16 | 12 | 7/16-14 | | 2 | 17.625/17.630 | 19-1/4 | 18-3/8 | 3-15/16 | 12 | 3/8-16 | | 3 | 16.125/16.130 | 17-3/4 | 16-7/8 | 3-15/16 | 12 | 3/8-16 | | 4 | 14.250/14.255 | 15-7/8 | 15 | 3-15/16 | 12 | 3/8-16 | | 5 | 12.375/12.380 | 14 | 13-1/8 | 2-13/16 | 8 | 3/8-16 | | 6 | 10.500/10.505 | 12-1/8 | 11-1/4 | 2-13/16 | 8 | 3/8-16 | For flywheel standards consult the SAE standards manual. Note: For mounting, use socket head capscrews conforming to the ASTM-574-97a. Support plate must be perpendicular to side load pull. ## **Allowable Side Load (lbs.)** | | | (1100) | , | | | |-----------|--------|--------|-------|-------|-------| | Х | | | RPM | | | | Dimension | 1000 | 1200 | 1800 | 2200 | 2400 | | 11 in. | 11,100 | 10,700 | 9,500 | 8,900 | 8,200 | | 12 in. | 10,000 | 9,500 | 8,500 | 8,000 | 7,400 | | 13 in. | 9,000 | 8,600 | 7,600 | 7,200 | 6,600 | | 14 in. | 8,200 | 7,800 | 7,000 | 6,500 | 6,100 | | 15 in. | 7,500 | 7,000 | 6,300 | 6,000 | 5,600 | | 16 in. | 7,000 | 6,600 | 5,800 | 5,500 | 5,300 | | 17 in. | 6,400 | 6,100 | 5,400 | 5,100 | 4,800 | | 18 in. | 6,000 | 5,700 | 5,000 | 4,700 | 4,400 | | 19 in. | 5,600 | 5,300 | 4,700 | 4,400 | 4,200 | | 20 in. | 5,400 | 5,200 | 4,500 | 4,200 | 4,000 | | | | | | | | #### **Specifications** | Clutch
Size | Torque*
lb.in.
(Nm) | Flywheel
Bore
Opening
in.(cm) | Spline Dia.
and Number
of Splines
in qty | Duty A to B ¹
Light and
Normal
HP/100 RPM | Duty C to D ¹
Heavy and
Extra Heavy
HP/100 RPM | Max.
Speed
RPM | Max.
Slip
Sec. | |--|---------------------------|--|---|---|--|----------------------|----------------------| | 14" Flat
(109504-10) Solo | 10,800
(1,220) | 7
(17.8) | 2" - 10 | 17 | 13 | 2100 | 3 | | 14" Pot ³
(108050-59) EP | 16,800
(1,898) | 7
(17.8) | 2" - 10 | 27 | 20 | 2100 | 3 | | 15-1/2" Flat
(109701-74) Solo | 19,800
(2,237) | 8.5
(21.6) | 2" - 10 | 32 | 20 | 2100 | 3 | | 15-1/2" Flat HC**
(109701-25) Solo | 24,600
(2,779) | 10
(25.4) | 2" - 10 | 39 | 20 | 2100 | 3 | On C & D duty applications, Clutch Torque must exceed Engine's Peak torque #### **Power Take Off Chart** | PTO | Flywheel | | SAE | Parts List | Drawing | | |-----------------|----------------|-----------|--------------|------------------|-----------------|----------| | Clutch | Туре | Туре | Bell Housing | Number | Number | Weight | | 14" Flat | Truck† | Inline | 1 | Available | Consult Factory | | | 14" Flat | Truck† | Inline | 2 | 6-714-299-210-0 | 6-714-202-915-9 | | | 14" Flat | Truck† | Side Load | 1 | 6-714-299-211-0 | 6-714-202-916-9 | | | 14" Flat | Truck† | Side Load | 2 | 6-714-299-209-0 | 6-714-202-914-9 | | | 14" Pot | Truck† | Inline | 1 | 6-714-299-104-0 | 6-714-200-911-9 | | | 14" Pot | Truck† | Inline | 2 | 6-714-299-105-0 | 6-714-200-910-9 | | | 15-1/2" Flat | Truck† | Inline | 1 | 6-715-299-206-0 | 6-715-202-909-9 | 242 lbs. | | 15-1/2" Flat | Truck† | Inline | 1 | 6-715-299-232-0 | 6-715-299-232-9 | | | 15-1/2" Flat | Truck† | Inline | 2 | 6-715-299-207-0 | 6-715-202-910-9 | | | 15-1/2" Flat HC | Truck† | Inline | 1 | 6-715-299-229-0 | 6-715-202-909-9 | | | 15-1/2" Flat | Truck† | Side Load | 1 | 6-715-299-208-0 | 6-715-202-912-9 | | | 15-1/2" Flat | 14" Industrial | Inline | 1 | 6-715-299-209-0 | 6-715-202-913-9 | 340 lbs. | | 15-1/2" Flat | 14" Industrial | Side Load | 1 | 6-715-299-221-0 | 6-715-202-918-9 | | | 15-1/2" Flat | 18" Industrial | Side Load | 0 | See ² | Consult Factory | | [†] Alternately referred to as a "Vehicular" flywheel. | Conversion Kits | Flywheels | SAE Bell Housing | |-----------------|---------------------------------|------------------| | 8-560-320-017-0 | 15-1/2" Truck to 14" Industrial | 1 to 1 | | 8-560-320-073-1 | 15-1/2" Truck to 18" Industrial | 1 to 0 | ### Mechanical Side Load PTO HP Rating based on side load using 12-1/2 P.D., 8-8V groove sheave at max. SF. | Speed | Bearing Carrier | Clutch Only | |-------|-----------------|-------------| | 1,800 | 200 HP | 360 HP | | 2.100 | 225 HP | 420 HP | ¹ See chart "A", on page 123. See Engine manufacturer for flywheel availability. #### **Estimated Side Load Calculation** #1 L = $$\frac{126,000 \times HP}{N \times D}$$ x F x SF #2 L = $$\frac{1,945,000 \times kW}{N \times D}$$ x F x SF L = Actual Applied Load (lbs. for #1 and kgs for #2) Shaft Speed (RPM) D = Pitch Diameter (in. for #1 and mm for #2) of Sheave F = Load Factor 1.0 for Chain Drive or Gear Drive 1.5 for Timing Belts 2.5 for All V-belts 3.5 for All Flat Belts SF = Service Factor 2.1 for Reciprocating Compressors and other severe shock drives 1.8 for Large Inertia Drives such as Crushers, Chippers, and Planers ^{15-1/2&}quot; Flat, high capacity clutch model - available upon request. $^{^2}$ 15-1/2" Flat, Side Load PTO uses conversion kit 8-560-320-073-1. ³ Old style flywheel, often not available on new engines. #### **Selection Example:** To properly select a Power Take Off (PTO), the following information is needed: - 1. Power transmission type: Inline or Side Load - 2. Application engine horsepower @ speed - 3. Peak engine torque - 4. SAE bell housing size - 5. New engine installation or retrofit to an existing engine - Duty selection: See chart "A", page 123 Chart "A" gives application requirements ranging from "Light" to "Normal" duties (A to B) and "Heavy" to "Extra Heavy" duties (C to D) - 7. Inertia of machine/load - 8. Pitch diameters of drive and driven sheaves**** - 9. Width of drive sheave on Power Take Off shaft**** - **** Not applicable to inline drives #### **Machine Requirement:** Machine Required: Mud Pump – Triplex piston type Installation: New engine installation Power Transmission Type: Side load HP & Speed: 300 HP @ 1,800 RPM Engine Peak Torque: 1,120 lb.ft. SAE Bell Housing Size: SAE bell housing 1 PD* Driver Sheave on PTO: 12.5 in. PD* Driven Sheave on Mud Pump: 15.0 in. Width of Driver Sheave on PTO: 9-3/8 in. (8 grooves – 8V section Belt Sheave**) WR² – Inertia of Pump: 108 lb.ft.² * PD is Pitch Diameter of sheave/pulley. ** See manufacturer for sheave details. #### **Calculations:** 1. Application Torque = HP x 63,000/RPM = lb.in. $300 \times 63,000/1,800 = 10,500$ lb.in. 2. Engine Peak Torque = lb. ft. x 12 = lb.in. 1,120 x 12 =13,440 lb.in. 3. Mud Pump's Speed = $1,800 \times 12.5/15 = 1,500 \text{ RPM}$ 4. Reflect Pump's inertia up to PTO's shaft = Pump's Inertia x $$\left(\frac{\text{Pump's speed}}{\text{PTO's speed}}\right)^2 = \text{lb.ft.}^2$$ $108 \times \left(\frac{1,500}{1,800}\right)^2 = 75 \text{ lb.ft.}^2 @ 1,800 \text{ RPM}$ 5. PTO's clutch slip time, (sec.) = $$\frac{WR^2 \times PTO's \text{ speed}}{25.6 \times Application Torque}$$ $$= \frac{75 \times 1,800}{25.6 \times 10,500} = 1/2 \text{ sec.}$$ 6. Estimate Side Load, (lbs.) = $$\frac{300 \times 378,000}{1.800 \times 12-1/2}$$ = 5,040 lbs. #### **How to Select:** #### Part 1. PTO Clutch Calculation Follows: - Select clutch duty from field of application = Reference chart "A", page 123, Petroleum production shows Mud Pump under duty "D" - 2. Determine required HP/100 RPM duty capacity = Application torque/630 = HP/100 RPM 10,500/630 = 16-2/3 HP/100 RPM Select clutches based on duty = On clutch capacity chart, page 149, shows the following clutches have sufficient capacity. 14" Pot, 15-1/2" Flat & 15-1/2" Flat HC - a.) This is a new engine installation and Note 3 states that there may be an availability problem with the 14" Pot style clutch. - b.) There is not an advantage in capacity to warrant the use of the 15-1/2" Flat HC style clutch. Therefore, preliminary selection of the clutch is the 15-1/2" Flat style clutch. - 4. Peak torque verses clutch torque = On "C" and "D" duty applications, it is required that the clutch torque is greater than engine's peak torque. 15-1/2" Flat clutch torque from clutch specifications chart on page 149 is 19.800 lb. in. Engine's peak torque is 13,440 lb.in. Clutch torque > Engine's peak torque 19,800 lb.in. > 13,440 lb.in. 5. Speed = Clutch capacity chart shows that it has a speed limit of 2,100 RPM which is greater than the required speed of 1,800 RPM. 6. Clutch slip time, (sec.) = Clutch capacity chart shows maximum clutch slip time as 3 sec. which is greater than the calculated 1/2 seconds. #### Part 2. Side Load Calculation Follows: Center of sheave's side pull = Sheave width/2 = (9-3/8)/2 = 4-11/16 in. Locate dimension from Bell housing to shaft's end = 20-15/16 in. Reference specific PTO drawing 15-1/2" Flat PTO side load, page 148. Determine "X" distance on PTO = (Bell hsg. to shaft's end dim.) - (Center of sheave's side pull) (20-15/16) - (4-11/16") = 16-1/4 in. Round "X" distance to the nearest whole number = 16 in. Look up side load = Check side load at PTO's speed and "X" distance Page 148, allowable side load. At "X" distance of 16 in. and 1,800 RPM, chart yields a side load capacity of 5,800 lbs. Comparison on side load = Side load capacity > Required side load 5,800 lbs. > 5,040 lbs. #### **Final Selection:** 15-1/2 in. Flat power take off, Side load version with SAE "1" Bell Housing Power take off chart, page 149, lists the associated parts lists and drawings. Parts Lists Number = 6-715-299-208-0 Drawing Number = 6-715-202-912-9 ## **Air-Tube Disc Design (Industrial)** ## **Design Features** - Disc design provides smooth, shock free start-ups. - Air activated-ideal for automatic or remote controls. - Bearing support eliminates sideload on crankshaft. - High speed air tube not affected by centrifugal force. - · No O-rings or diaphragms to wear out. - Dynamically balanced for high speed operation. - Models available for all popular diesel engines. Up to 700 HP capacity. ## Typical air control system P-1100-WC 8/22 www.wichitaclutch.com 151 # **Air Tube Disc Side Load PTOs** Type B Type C ## **Dimensions and Specifications: inches** | | | | | _ | | | | | | | | | | | | | |-------------------|----------------|------------|------|------------------|--------|-------|----------|----------|----------|--------------|-------|--------------|---|------------|-----------------------------|-------------------| | Parts
List No. | Clutch
Size | SAE
No. | Туре | E
+000
005 | F | G | Н | J | K | +.000
002 | M | Holes
No. | | Keyway | No. &
Type of
Grooves | P.D. of
Sheave | | 6-715-204-302-0 | 214H | 1 | В | 18.375 | 17-1/4 | 1.000 | 10-13/16 | 17-17/32 | 11-25/32 | 3.625 | 7-1/4 | 17/32 | 8 | 7/8 X 7/16 | _ | _ | | 6-715-204-303-0 | 214H | 1/2 | В | 18.375 | 17-1/4 | 1.750 | 10-13/16 | 17-17/32 | 11-1/32 | 3.625 | 7-1/4 | 21/32 | 6 | 7/8 X 7/16 | _ | _ | | 6-715-204-304-0 | 214H | 0 | В | 18.375 | 17-1/4 | 1.000 | 10-13/16 | 17-17/32 | 11-25/32 | 3.625 | 7-1/4 | 21/32 | 6 | 7/8 X 7/16 | _ | _ | | 6-715-204-306-0 | 214H | 1 | C | 18.375 | 17-1/4 | 1.000 | 10-13/16 | 23-15/16 | 11-13/16 | 2.500 | 4-5/8 | 17/32 | 8 | 5/8 X 5/16 | 8-"8V" | 12.3 | | 6-718-104-307-0 | 118 | 1/2 | В | 22.498 | 21-3/8 | 1.000 | 10-5/8 | 17-17/32 | 11-25/32 | 3.625 | 7-1/4 | 21/32 | 6 | 7/8 X 7/16 | _ | _ | | 6-718-104-302-0 | 118 | 0 | В | 22.498 | 21-3/8 | .625 | 10-13/16 | 17-17/32 | 11-25/32 | 3.625 | 7-1/4 | 21/32 | 6 | 7/8 X 7/16 | _ | _ | | 6-718-104-306-0 | 118 | 0 | A | 22.498 | 21-3/8 | .625 | 8-51/64 | 20-1/2 | 10-7/64 | _ | _ | 21/32 | 6 | _ | 10-"8V" | 15.2 | | 6-718-104-304-0 | 118 | 0 | Α | 22.498 | 21-3/8 | .625 | 8-51/64 | 20-1/2 | 10-7/64 | _ | _ | 21/32 | 6 | _ | 10-"D" | 15.2 | | 6-718-104-303-0 | 118 | 1/2 | Α | 22.498 | 21-3/8 | 1.000 | 10-5/8 | 23-15/16 | 11-25/32 | _ | _ | 21/32 | 6 | _ | 16-"8V" | 12.5 | | 6-718-104-305-0 | 118 | 0 | Α | 22.498 | 21-3/8 | .625 | 10-13/16 | 23-15/16 | 11-25/32 | _ | _ | 21/32 | 6 | _ | 16-"8V" | 12.5 | | 6-718-104-301-0 | 118 | 1/2 | Α | 22.498 | 21-3/8 | 1.000 | 10-5/8 | 23-15/16 | 11-25/32 | _ | _ | 21/32 | 6 | _ | 20-"5V" | 12.5 | | 6-718-204-307-0 | 218 | 1/2 | В | 22.498 | 21-3/8 | 1.000 | 10-5/8 | 17-17/32 | 11-25/32 | 3.625 | 7-1/4 | 21/32 | 6 | 7/8 X 7/16 | _ | _ | | 6-718-204-308-0 | 218 | 0 | В | 22.498 | 21-3/8 | .625 | 11-3/16 | 17-17/32 | 12-5/32 | 3.625 | 7-1/4 | 21/32 | 6 | 7/8 X 7/16 | _ | _ | | 6-718-204-303-0 | 218 | 1/2 | Α | 22.498 | 21-3/8 | 1.000 | 10-5/8 | 23-15/16 | 11-25/32 | _ | _ | 21/32 | 6 | _ | 16-"8V" | 12.5 | | 6-718-204-304-0 | 218 | 1/2 | С | 22.498 | 21-3/8 | 1.000 | 10-5/8 | 23-15/16 | 11-13/16 | 2.500 | 4-5/8 | 21/32 | 6 | 5/8 X 5/16 | 8-"8V" | 12.3 | | 6-718-204-301-0 | 218 | 0 | Α | 22.498 | 21-3/8 | .625 | 10-13/16 | 23-15/16 | 11-25/32 | _ | _ | 21/32 | 6 | _ | 16-"8V" | 12.5 | | 6-718-204-306-0 | 218 | 0 | С | 22.498 | 21-3/8 | .625 | 10-13/16 | 23-15/16 | 11-13/16 | 2.500 | 4-5/8 | 21/32 | 6 | 5/8 X 5/16 | 8-"8V" | 12.3 | | 6-718-304-300-0 | 318 | 0 | В | 22.498 | 21-3/8 | .625 | 12-3/8 | 17-17/32 | 13-19/32 | 3.625 | 7-1/4 | 21/32 | 6 | 7/8 X 7/16 | _ | _ | Note: For standard SAE engine flywheel dimensions see page 142. ### Allowable Side Load (lbs.) at 1,800 RPM | Туре А | Distance X from | Load | Distance X from | Load | |--------|-----------------|--------------------|-----------------|-------| | Type A | base mount-in. | lb. base mount-in. | | lb. | | | 0 | _ | 14 | 8,900 | | | 4 | 5,400 | 16 | 7,100 | | | 6 | 6,300 | 18 | 6,000 | | | 8 | 7,500 | 20 | 5,100 | | | 10 | 9,200 | 22 | 4,400 | | | 12 | 12,000 | 24 | 4,300 | Note: Derate by 20% for 2,100 RPM. | Type B | Distance X from base mount-in. | side load
lb. | Distance X from base mount-in. | Load
lb. | |--------|--------------------------------|------------------|--------------------------------|-------------| | | _ | _ | 12 | 4,400 | | | 4 | 11,500 | 13 | 4,100 | | | 5 | 9,600 | 14 | 3,800 | | | 6 | 8,200 | 15 | 3,600 | | | 7 | 7,200 | 16 | 3,400 | | | 8 | 6,400 | 17 | 3,200 | | | 9 | 5,800 | 18 | 3,000 | | | 10 | 5,200 | 19 | 2,900 | | | 11 | 4,800 | 20 | 2,800 | Note: Derate by 20% for 2,100 RPM. Type C 6,500 lb. Max. side load. Note: Derate by 20% for 2,100 RPM. ## **Clutch Specification Table** | Clutch Model | Recommeded
Maximum PTO
HP/100 RPM | Clutch Siip Torque
Ib.in. at 100 PSI
.3 CF.* | Recommeded Maximum
PTO HP/100 RPM With
Heavy Duty Friction Disc | |--------------|---|--|---| | 214H | 18 | 71,600 | 23 | | 118 | 21 | 64,500 | 27 | | 218 | 42 | 129,000 | 54 | * Recommend only 25% of rated torque on PTO's (in.lbs.) - 30% with heavy duty disc. Note: For mounting, use socket head capscrews conforming to the ASTM-574-97a. Support plate must be perpendicular to sideload pull. #### **Estimated Side Load Calculation** #1 L = $$\frac{126,000 \times HP}{N \times D}$$ x F x SF #2 L = $\frac{1,945,000 \times kW}{N \times D}$ x F x SF L = Actual Applied Load (lbs. for #1 and Kgs for #2) N = Shaft Speed (RPM) D = Pitch Diameter (in. for #1 and mm for #2) of Sheave. F = Load Factor 1.0 for Chain Drive or Gear Drive1.5 for Timing Belts2.5 for All V-belts 2.5 for All V-belts 3.5 for All Flat Belts SF = Service Factor 2.1 for Reciprocating Compressors and other severe shock drives 1.8 for Large Inertia Drives such as Crushers, Chippers, and Planers www.wichitaclutch.com 153